

QUALIFICATIONS
ALLIANCE

General Certificate of Education

Statistics 6380

SS05 Statistics unit 5

Mark Scheme
 2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$\begin{aligned} & \mathrm{P}(0.8 \leq X \leq 1.2)=\frac{1.2-0.8}{2-0} \\ & =\frac{0.4}{2}=0.2 \end{aligned}$	M1 A1	2	
(a)(ii)	$\mathrm{P}(X=1)=0$	B1	1	
(b)(i)	$\begin{aligned} & \mathrm{P}(X \geq 0.6)=\frac{2-0.6}{2}=\frac{1.4}{2}=0.7 \\ & \mathrm{P}(\text { all three } \geq 0.6) \\ & =(0.7)^{3} \\ & =0.343 \end{aligned}$	B1 M1 A1	3	probability raised to power of 3 CAO
(ii)	P (remnant less than 1 metre long) $\begin{aligned} & =\frac{1-0.6}{2-0.6}=\frac{0.4}{1.4} \\ & =0.286(3 \mathrm{sf}) \end{aligned}$ or $\begin{aligned} & \mathrm{P}(X<1 \mid X \geq 0.6) \\ & =\frac{\mathrm{P}(0.6 \leq X<1)}{\mathrm{P}(X \geq 0.6)}=\frac{0.2}{0.7} \\ & =0.286 \end{aligned}$	M1 A1 (M1) (A1)	2 (2)	
	Total		8	

SS05 (cont)

Q	Solution	Marks	Total	Comments
2(a)(i)	$v=9$	B1		here or in (ii)
	$t= \pm 2.262$	B1		$S^{2} \times \frac{10}{9}$: withhold last A mark in 1 part
	95\% confidence limits for mean are: 13.9	M1		use of formula
	$446.9 \pm 2.262 \times \frac{13.9}{\sqrt{10}}$	m1		standard error
	95\% confidence interval is: $(437,457)$ grams	A1	5	(436.9 to 437, 456.8 to 457)
(ii)	$\chi^{2}=2.700,19.023$	B1		both
	$\frac{9 \times 13.9^{2}}{19.023}, \frac{9 \times 13.9^{2}}{2.700}$	M1		
	$\overline{19.023}, \overline{2.700}$	A1 \checkmark		correct values substituted ft on incorrect x^{2} values
	($95 \% \mathrm{CI}$ is ($91.410,644.03$)) 95% CI for standard deviation is:			
	$\left(\sqrt{\frac{9 \times 13.9^{2}}{19.023}}, \sqrt{\frac{9 \times 13.9^{2}}{2.700}}\right)$	M1		
	$=(9.56,25.4)$ grams	A1	5	(9.5 to 9.6, 25.3 to 25.4) CAO
(b)	Damien's claim seems to be correct upper CL for mean is less than 460	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	2	must say above CI
(c)	taking lower CL for mean (437) and upper CL for SD (25.4)	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		
	350 is more than 3 SDs below mean making it plausible that Damien made a mistake	E1	3	SC E1 for plausible because 350 well below CI for mean
	Total		15	

SS05 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{aligned} & \mathrm{P}(X<2)=1-\mathrm{e}^{-0.4 \times 2} \\ & =1-\mathrm{e}^{-0.8}=0.551 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	or by integration AWRT
(ii)	$\begin{aligned} & \mathrm{P}(2 \leq X \leq 5)=\mathrm{F}(5)-\mathrm{F}(2) \\ & =\left(1-\mathrm{e}^{-2}\right)-\left(1-\mathrm{e}^{-0.8}\right) \\ & =0.314 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	or by integration AWRT
(b)	$\begin{aligned} & \text { for median } m, \mathrm{~F}(m)=0.5(=1-\mathrm{F}(m)) \\ & \mathrm{F}(1.7)=1-\mathrm{e}^{-0.68}=0.493 \\ & \left(\mathrm{e}^{-0.68}=0.507\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		may be implied
	$\begin{aligned} & F(1.8)=1-e^{-0.72}=0.513 \\ & \left(\mathrm{e}^{-0.72}=0.487\right) \end{aligned}$	B1		
	0.5 lies between 0.493 and 0.513 so median lies between 1.7 and 1.8 or	E1	4	
	$\begin{aligned} & \mathrm{e}^{-0.4 m}=0.5 \\ & -0.4 m=\ln (0.5) \end{aligned}$	$\begin{aligned} & \text { (M1) } \\ & \text { (m1) } \end{aligned}$		equation of correct form attempt to solve using logs
	$m=\frac{0.693}{0.4}=1.73$ so median lies between 1.7 and 1.8	(A1) (E1)		solution used to answer question
	Total		8	

SS05 (cont)

Q	Solution	Marks	Total	Comments
6	assume weights selected by Amy and Ben are normally distributed with common variance independence between samples $\begin{aligned} & \mathrm{H}_{0}: \mu_{A}=\mu_{B} \\ & \mathrm{H}_{1}: \mu_{A} \neq \mu_{B} \end{aligned}$ pooled estimate of variance $\begin{aligned} & =\frac{\left(10 \times 3.24^{2}\right)+\left(8 \times 2.71^{2}\right)}{10+8} \\ & =9.096 \\ & v=18 \\ & t= \pm 2.878 \\ & \text { sample statistic }=\frac{41.6-38.4}{\sqrt{9.096\left(\frac{1}{11}+\frac{1}{9}\right)}} \\ & =2.36 \end{aligned}$ $2.36<2.878 \text { so accept } H_{0}$ There is not enough evidence at the 1% level to say that the earlier assessment was wrong	B1 B1 M1 B1 M1 A1 B1 B1 M1 A1 A1 \checkmark A1 \checkmark	12	any two attempt to use t-test for difference of means both accept 9.09 to 9.10 correct values substituted ft on standard error; AWRT ft on sample statistic and t depends on first and last M1
	Total		12	
	TOTAL		75	

