Version 1.0

General Certificate of Education (A-level) June 2011

Statistics

SS04

(Specification 6380)

Statistics 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS04				
Q	Solution	Marks	Total	Comments
1	H ₀ : $\mu = 140$ and H ₁ : $\mu \neq 140$	B1		Both correct
	Use SE(mean) = $22.79/\sqrt{12}$	M1		Use of SE = S/ \sqrt{n} allow $n = 11$ or 12
	$t = \pm (137.24 - 140) / (22.79 / \sqrt{12})$	m1		Correct expression - ignore sign
	-0.4195 = (-) 0.420	A1		(-)0.415 to (-)0.425
	df, $\nu = 11$	B1		$v = 11 \Rightarrow$ implied by 1.363, 1.796, 2.201, 2.718 or 3.106
	FT 2.5% point: $t_{(0.025)}$ (±) 2.201	B1√		$\pm t_{(0.025)}$ FT their df, (e.g. 2.179 for v = 12)
	Accept H ₀ (or <i>p</i> -value approach) Accept Aaron's claim. There is no significant evidence that the mean weight	A1√ A1	8	Their TS vs recognisable <i>t</i> value, matching signs $P(t_{11} < -0.4195) = 0.341463 > 0.025$ Ignore missing/faulty H ₀ Completely correct, 0.420 vs 2.201,
	of pears is not 140g.			conclusion in context: Mean pears weight = 140g.
	CI approach			
	Hypotheses correct $137.24 \pm 2.201 \times (22.79/\sqrt{12})$ Using 2.201: 122.76 to 151.72 CI includes 140, accept H ₀ Accept Aaron's claim.	(B1) (M1) (m1) (B1) (B1 \checkmark) (A1) (A1 \checkmark) (A1)		SE(mean) with $n = 11$ or 12, expression for CI, allow use of t or Z v = 11 seen or implied FT on t value, 2.201 Limits 122.7 – 123.0 and 151.7 to 152.0 compare 140 to limits, Accept H ₀ completely correct, contextual conclusion
	<i>z</i> (1.96): interval 124.35 to 150.13	× /		B1 M1 m1 B0 B0 \checkmark A1 A0 \checkmark A0
	124.0 - 124.4; 150.0 - 150.2			Max 4/8
	Total		8	

SS04 (cont)				-
Q	Solution	Marks	Total	Comments
2(a)	Sales ~ P(187) \rightarrow N(μ , μ)	M1		Attempt a Normal approximation
	$\mu = \sigma^2 = 187$	A1		Mean and variance both 187 (σ = 13.7)
	$z = \pm (176 - 0.5 - 187) / \sqrt{187} = -0.841$	ml		Standardise 176, ignore any CCF, $\sigma = \sqrt{187}$
	$P(S < 176) = 1 - \Phi(0.841)$	ml		Attempt lower tail probability ($p < 0.5$)
	1 - 0.800 = 0.200	A1	5	0.199 ~ 0.201
(b)	Binomial $n = 175 \ p = 0.008$	B1		B(175,0.008) identified
	\rightarrow Poisson $\mu = 175 \times 0.008 = 1.4$	M1		Attempt $Po(\mu = n \times p)$ Normal gets M0
	Use of $P(1.4)$, tables or calculation	ml		P(0) = 0.2466, P(1) = 0.3452, P(2) = 0.2417
	Attempt $P(2 +) = 1 - P(0,1) = 1 - 0.5918$	ml		1 - P(0, 1) or $1 - P(0,1,2) = 1 - 0.8335 = 0.1665$
	= 0.408	A1	5	$0.40 \sim 0.41$
	B(175, 0.008) $\Rightarrow 1 - 0.5913 = 0.409$			B used: $P(0) = 0.2452$, $P(1) = 0.3461$, P(2) = 0.2428
(c)	During Elani's first week,			
	Allow generous first E1 for reasonable comment about sales/faults			Sales below average and faults above average
	Observed sales below average, but $P(S \le 176)$ not too small (0.2)	E1√		176 sales below average but not significantly so (quite likely)
	Observed faults above average, but P(2+) not small (0.4)	E1√		2 faults slightly more than expected but not significantly so (quite likely) Faults are responsibility of manufacturers (not management)
	If both above not gained, allow E1 for comment on paucity of data	(E1)		Too little data, one week insufficient
	Consider both sales and faults, and argue claim not justified or P(both) = $0.2 \times 0.4 = 0.08$ quite small so there may be a concern	E1dep	3	Overall no evidence Elani ineffective or Poor performance in both areas may indicate a problem Requires consideration of both sales & faults
				maximum 3
	Total		13	

SS04 (cont)				
Q	Solution	Marks	Total	Comments
3(a)	Sample mean = 20.7 and SD = 9.154 $\sigma_n = 8.6838$	B1		20.7 CAO and 9.15 (9.15 ~ 9.16) (implied by $s^2 = 83.7 ~ 83.8$)
	use $t_{(0.025)} = 2.26(2)$	B1		2.262 seen
	95% CI: 20.7 \pm 2.262 \times 9.154/ $\sqrt{10}$	M1		CI method, <i>t</i> or <i>z</i> , $\sqrt{10}$ used
	$20.7 \pm 2.262 \times 9.154/\sqrt{10}$	m1		correct 2.26 and $\sqrt{10}$, their mean/SD M0 for $\sigma_n/\sqrt{10}$, $s/\sqrt{9}$, mean = 40
	20.7 ± 6.55 or 14.2 ~ 27.2	A1	5	$(14.1 \sim 14.2)$ to $(27.2 \sim 27.3)$ or $\pm (6.50 \sim 6.55)$
(b)	If average = 50% of available marks (80) target mean should be 40. IF SD = 10% of available mark (80) Target SD should be 8	E1		target mean = 40 marks seen and / or target SD = 8 marks seen
	CI for mean < 40, so evidence that the test is too difficult/ inappropriate/ target not met.	E1√		FT their values
	SD close to (>) 8, so variability criteria satisfied/ target met.	E1√	3	FT their values
	Total		8	

SS04 (cont)				
Q	Solution	Marks	Total	Comments
4 (a)	H ₀ : λ or $\mu = 9$ per week; H ₁ : $\mu < 9$	B1		Both — allow $\mu = 36$ (per 4 weeks)
	Over 4 weeks $\mu = 4 \times 9 = 36$	B1		mean 36
	Poisson \rightarrow N(36, 36)	M1		N(μ , μ) attempt (e.g μ = 5.75, 9, 23 or 36)
	$z = \pm (23.5 - 36)/\sqrt{36} = -2.08$ or $z = \pm (23 - 36)/\sqrt{36} = -2.17$	m1		Standardise 23 — ignore sign and CC $\mu = 36$ and $\sigma = 6$ correct
	Either $z = -2.08$ or -2.17 implied by $\Phi(z) = 0.0188$ or 0.0150	A1		$(-)2.08 \sim (-)2.09;$ $(-)2.16 \sim (-)2.17$ $0.0183 \sim 0.0188$ $0.0150 \sim 0.0154$
	OR $CV = z_{(0.10)} = (-)1.2816$ $\Phi(z)$ vs 0.1	B1 (M1)		(-)1.28 to (-)1.282, ignore sign Their <i>p</i> -value vs 0.1
	TS vs 1.282; p vs 0.1 Reject H ₀	A1√		Conclusion, FT their TS vs 1.282 consistent signs/(valid) <i>p</i> -value vs 0.10
	Evidence that the mean number of complaints of anti-social behaviour in 2011 is likely to be less than 9 per week.	A1	8	Completely correct, correct conclusion in context (ignore faulty $H_0 H_1$)
(b)	Complaints may not be independent	E1	1	Any valid contextual reason why Poisson invalid
	Mean number of complaints may change due to weather, seasonal events, time of year so not constant etc			But "Complaints not constant" — E0
	Total		0	
	lotai		9	

SS04 (cont)				
Q	Solution	Marks	Total	Comments
5(a)(i)	10 Pubs raise $\pounds P \sim \text{Normal}, \mu = 9000$	B1		9000
	$\sigma = \sqrt{(10 \times 185^2)} = \sqrt{342\ 250} = 585.02$	B1	2	σ = 585 validly shown
(ii)	<i>z</i> = (10 000 – 9 000) / 585.02 = 1.709	M1		Standardise 10,000 and attempt $\Phi(+z)$
	$P(P > 10\ 000) = P(Z > 1.709)$	1411		FT on μ , $\pm z$
	= 1 - 0.956 = 0.044	A1	2	0.044 (0.043 ~ 0.044)
(b) (i)	Total raised $\sim T = 3P$ $\mu = 27000$	B1		27 000 CAO
	$\sigma^2 = 9(585^2)$ or $\sigma = 3 \times 585.02$	M1		method for σ or σ^2
	$\sigma^2 = 3\ 080\ 025$ or $\sigma = 1755$	A1	3	σ^2 : 3080 000 ~ 3 080 500 σ : 1 750 ~ 1 760
(ii)	Distribution of Surplus = $T - Cost$,	M1		Attempt distribution of difference, neither treated as a constant
	$\mu = 27000 - 29000 = (-)2000$	A1		± 2000
	$\sigma^2 = 1755^2 + 500^2 = 3330025$ or $\sigma = 1825$	M1		500^2 + (b)(i) variance
	P(S > 0) = P(Z > (0 + 2000)/1825)	m1		Standardise 0, attempt $\Phi(\pm \mu/\sigma)$
	= P(Z > 1.096) = 1 - 0.863 = 0.137	A1	5	0.135 ~ 0.140
(c) (i)	Amount raised by each pub may be affected by time of year/recession which will affect all pubs/pubs close together may affect each other's fund-raising.	E1		Reason why money raised by each pub is not independent of other pubs
(ii)	Final specification may be arranged so that the machine may be bought with the money raised/extra effort may be made to raise funds if total falls slightly short of final price.	E1	2	Reason why final cost of equipment may not be independent of money raised
	Total		14	

SS04 (cont)				
Q	Solution	Marks	Total	Comments
6(a)(i)	H ₀ : $p = 0.03$ and H ₁ : $p > 0.03$	B1		H_0 and H_1 — may be earned in (a)(ii)
	B(30, 0.03)	M1		attempted use of B(30, 0.03)
	attempt $P(2+) = 1 - P(0,1) = 1 - 0.7731$	m1		1 - P(0,1) or $1 - P(0,1,2) = 1 - 0.9399 = 0.0601$
	= 0.2269	A1		0.226 ~ 0.227
	Accept H_0 , as 0.2269 > 0.05	A1√		FT Conclusion (Ignore H_0), their (valid) <i>p</i> -value vs 0.05
	No evidence scheme was effective	A1	6	Completely correct and conclusion in context
(ii)	$H_0: p = 0.03$ $H_1: p > 0.03$			Can recover B1 above if not gained in a(i)
	B(583,0.03)	B1		attempt B(583, 0.03) use NB P(2) = 0.167
	Normal $N(np, npq)$	M1		N(np, npq) attempt, $n = 583$ their p
	$\mu = 583 \times 0.03 = 17.49$ $\sigma^2 = 583 \times 0.03 \times 0.97 = 16.97$	ml		Attempt <i>np</i> and <i>npq</i> with $n = 583$, $p = 0.03$ $\mu = 17.5$ and $\sigma^2 = 17.0$ ($\sigma = 4.119 = 4.12$)
	P(28+): $z = (27.5 - 17.49)/4.119 = 2.43$ Or $(28.0 - 17.49)/4.119 = 2.55$	ml		Standardise 27 FT μ and σ , ignore CC
	Either $z = 2.43$ or 2.55	A1		2.42~2.44; 2.54~2.56
	CV: $z_{(0.05)} = 1.6449$ OR $\Phi(z)$ vs 0.05	B1 (M1)		1.64 \sim 1.65, allow if <i>p</i> -value vs 0.05 Appropriate tail probability vs 0.05
	z > 1.64/1.65, Reject H ₀ $\Phi(z) = 0.00755$ or $0.00539 < 0.05$	A1√		FT conclusion TS vs 1.65, or <i>p</i> -value 0.0075 ~ 0.0076; 0.0053 ~ 0.0054 < 0.05
	Evidence show scheme has been effective	A1	8	Completely correct, in context
	POISSON approx, $\mu = 17.5$	(B1)		B(583,0.03) $P_0(17.49 = 17.5)$
	$P(X \ge 28) = 1 - P(27) = 1 - 0.9875 = 0.0125$	(M1A1) (M1A1)		$P(X \ge 28) = 0.012 \sim 0.013$
	0.0125 < 0.05 reject H ₀	(M1A1)		p value < 0.05, Reject H ₀
	Conclusion in context	(A1)		context
	$Binomial \implies Poisson \implies Normal$			Allow M's and B's only for consistent working, max 5/8
a(iii)	Accept (a)(ii) conclusion since it is based on a larger sample	E1	1	(a)(ii) because larger sample
				allow mark for comments casting doubt on appropriateness of binomial model

Q	Solution	Marks	Total	Comments
6(b)	p = 10/583 = 0.01715	B1		$10/583$; $0.017 \sim 0.0172$
	Use <i>z</i> = 1.96	B1		1.96 seen
	$p \pm z \times \sqrt{(pq/n)}$	M1		attempt CI, $n = 583$, their p , any z
	$0.01715 \pm 1.96 \times \sqrt{(0.01715 \times 0.98285/583)}$	ml		correct expression using 1.96
	$\begin{array}{l} 0.01715 \pm 0.01054 \\ = 0.0066 \text{ to } 0.0277 \end{array}$	A1	5	$\begin{array}{l} 0.017 \pm 0.011 \\ (0.006 \ \sim 0.007) \ \text{to} \ (0.027 \sim 0.028) \end{array}$
(c)	Some customers (did) do spend more than £30 without a voucher, so Jarrald could be correct	E1		Argument that Jarrald could be correct
	Confidence interval in (b) suggests the proportion of customers spending more than $\pounds 30$ without voucher is below 3%.	E1		Upper CI below 3%, customers spending more than £30 without voucher is below previous level. Or comment that majority (18/28) spending over £30 used voucher.
	Before vouchers 3% spent more than £30. Evidence from (a)(ii) indicates promotion increases proportion above 3% so extra revenue might make cost of promotion worthwhile.	E1	3	Argument that increased revenue might justify cost, or argue data presented makes cost benefit uncertain.
				Also allow marks for comments on appropriateness of model if not already awarded in (a)(iii)/possible increase in number of customers etc
	Total		23	
	TOTAL		75	