

General Certificate of Education June 2010

Statistics

SSO4

Statistics 4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & \\ \hline \text { m or dM } & \text { mark is dependent on one or more M marks and is for method } \\ \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } m \text { marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS04

Q	Solution	Marks	Total	Comments
1(a)	Approximate 99\% confidence interval			
	$\mathrm{SD}=\sqrt{24}$ used	B1		$\sqrt{24}$ used for s.d.
	$24 \pm Z \text {-value } \times \sqrt{24}$	M1		C1 method, recognisable Z, their s.d.
	$\mathrm{Z}=2.5758$	B1		Accept 2.58
	24 ± 12.6 or $11.4 \sim 36.6$	A1	4	$\begin{aligned} & 24 \pm(12.6 \sim 12.7) \text { or } \\ & (11.3 \sim 11.4) \text { to }(36.6 \sim 36.7) \end{aligned}$
(b)	Since 17 lies within the interval	B1		17 lies within CI
	Editors claim incorrect/not justified No evidence of a significant increase in mean number of births	E1 \checkmark	2	correct conclusion their CI
	Total		6	
2(a)(i)	P(Spelling Error) constant/same, or Errors are independent, or			constant p/errors independent/ n constant (fixed)
	Number words per page constant.	E1	1	"Random Sample" E0
(ii)	Poisson approx to $\mathrm{B}(\mathrm{n}=200, \mathrm{p}=0.0035)$	B1		Poisson, mean $200 \times 0.0035=0.7$
	$\mathrm{P}(\mathrm{X}>2)=1-\mathrm{P}(X \leqslant 2)$	M1		Attempt, $1-\mathrm{p}(0,1,2)$ or $1-\mathrm{p}(0,1)$ $1-0.9659$
	$1-0.4966-0.3476-0.1217$			$1-0.8442(=0.156)$
	$1-0.9659=0.0341$	A1	3	0.0341 (0.034~0.0342)
(b)(i)	$\mathrm{Y}=$ Grammatical errors \sim Poisson(274)	B1	1	Poisson (np $=365 \times 0.75=273.75$), Implied by "normal" \& $\mathrm{N}(274,274)$ used in (ii)
(ii)	$\mathrm{Y} \sim \operatorname{approx} \mathrm{N}(274,274)$	M1		$\begin{aligned} \text { Normal } \mu=\sigma^{2} & =\text { their } 365 \times 0.75 \\ \sigma & =\sqrt{ } 273.75=16.545\end{aligned}$
	$\mathrm{P}(\mathrm{Y}<300)=\mathrm{P}(\mathrm{Z}<299.5-273.75) / 16.545$	m1		Standardise 300, \pm Z, ignore c.c.
	$\mathrm{Z}=(\pm) 1.5563$	m1		Correct use of c.c. (\pm Z $)$
	$\mathrm{P}(\mathrm{X}<300)=0.940$	A1	4	0.940 ($0.939 \sim 0.941)$
	Total		9	

SS04 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$\mathrm{H}_{0}: \mu=1000 \quad \mathrm{H}_{1}: \mu<1000$	B1		Both hypotheses correct
	$\bar{x}=995.5 \& \mathrm{~s}=32.725$	B1		$\begin{array}{r} (995 \sim 996) \&(32.7 \sim 32.8) \\ \text { NB } \sigma_{\mathrm{n}}=31.05 \end{array}$
	Use of SD/ $\sqrt{10}$	M1		Use of their s.d.// 10
	$\mathrm{t}= \pm(995.5-1000) /(32.725 / \sqrt{10})$	m1		Method for ts, - ignore sign use of σ_{n} gives $\mathrm{t}=-0.458, \mathrm{~m} 0$
	$\mathrm{t}=-0.435$	A1		-0.435 (-0.43~-0.44)
	$v=9 \mathrm{df}$	B1		9 df , may be implied ($2.5 \%=2.262$)
	c.v. $\mathrm{t}_{9}(-) 1.833$	B1ヶ		-1.833, their df (5% point)
	Accept H_{0} Howard's claim confirmed. There is no significant evidence the mean weight of bags less than 1000 g .	A1」	8	Their -ve ts versus -1.83(3) not inconsistent with their H_{0}.
(b)	Type 2 error,	B1		Type II error
	Since Jean suspected that an incorrect null hypothesis had been accepted.	E1dep	2	Correct explanation, false H_{0} accepted, dependent on B1
(c)	The sample mean is $>1000 \mathrm{~g}$, so the test statistic will be positive.	E1		Sample mean $>1000 \mathrm{~g},+\mathrm{ve}$ ts
	The critical value is negative so H_{0} cannot be rejected.	E1	2	Complete explanation, $+v e$ ts versus -ve CV
(d)	If sample is not random the conclusions are unreliable	E1		Invalid, unreliable- reliability affected
	Manager may select only relatively heavy bags for the sample.	E1	2	Justification, sample may be biased, by selection of heavy bags
	Total		14	

SS04 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\mathrm{H}_{0}: \mathrm{p}=0.2 \mathrm{H}_{1}: \mathrm{p}<0.2$	B1		Both hypotheses
	$\mathrm{B}(25,0.2)$	B1		Attempted use of $\mathrm{B}(25,0.2)$
	$\mathrm{P}(\mathrm{X} \leq 1)\{\mathrm{P}(0,1)=0.00378,0.0236\}$	M1		$\mathrm{P}(\mathrm{X} \leq 1)$ or $\mathrm{P}(0)$, lower tail prob. M0 for Normal approx
	$=0.0274$	A1		0.0274 ($0.027 \sim 0.0275)$
	Reject H_{0}, since $0.0274<0.05$	A1 \checkmark		Conclusion-their p vs 0.05 (5\%)
	Simone correct. Less than 20% of members will attend the AGM.	A1	6	Completely correct, conclusion in context
(b)	$\mathrm{p}=11 / 235=0.046808$	B1		11/235, acf, 0.0468-0.047
	$\mathrm{Z}=(\pm) 1.6449$	B1		$1.64 \sim 1.65$
	$\mathrm{SE}(\mathrm{p})=\sqrt{\{\mathrm{p} \times(1-\mathrm{p}) \mathrm{n}\}}=0.01378$	M1		Method for SE(p)
	$\mathrm{CI}=\mathrm{p} \pm \mathrm{Z} \times \sqrt{\{\mathrm{p} \times(1-\mathrm{p}) / \mathrm{n}\}}$	m1		CI method - allow incorrect Z value
	$0.04681 \pm 1.645 \times 0.01378$			$\begin{gathered} (0.0468 \sim 0.0470) \pm(0.0225 \sim 0.0230) \\ \text { or } \end{gathered}$
	0.0468 ± 0.0227 or $0.024 \sim 0.069$	A1	5	(0.024~0.025) to (0.069~0.070)
(c)	Expected attendance $=7090 \times \mathrm{p}$ vs 600	E1		$7090 \times$ (a probability) or equivalent
	$\begin{gathered} \text { Attendance }<7090 \times\left(\begin{array}{c} \text { 'their } 0.0694 ’ \\ \\ =492 \end{array}\right) \end{gathered}$	B1 \checkmark		$7090 \times$ their upper limit for p
	Room large enough as $492<600$ Simone correct	B1	3	Completely correct $492(489 \text { to } 496)<600, \text { room OK }$
	Equivalent argument based on proportion attending			$\mathrm{p}=600 / 7090(0.085,8.5 \%) \quad \mathrm{E} 1$ 600/7090 > their upper limit B1 $0.085>0.069 \sim 0.070 \Rightarrow \mathrm{OK} \mathrm{B} 1$
			14	

SS04 (cont)

SS04 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	Total time, T is normally distributed	B1		Normal implied by use in (ii)
	Mean $12.5+9.6+19.0=41.1$	B1		41.1 CAO
	Variance $=1.5^{2}+1.3^{2}+1.9^{2}=7.55$	B1	3	$7.55 \mathrm{CAO}, \mathrm{sd}=2.75$ AWRT
(ii)	$\mathrm{Z}= \pm(42-41.1) / 2.748=0.3275$	M1		Standardise 42, their mean, s.d. NO cc
	$\mathrm{P}(\mathrm{T}<42)=\mathrm{P}(\mathrm{Z}<0.3275)=0.628$	A1	2	0.628 (0.625~0.63)
(b)(i)	$\mathrm{C}<16.5$ required or equivalent	B1		16.5 or conditional $\mu=42(\mathrm{~F}) \& 41.5(\mathrm{I})$
	$\mathrm{P}(\mathrm{C}<16.5)$			Method using C or T (at least one variance correct, F or I)
	$\begin{aligned} & \text { Or } \mathrm{P}(\mathrm{~T}<39 \mid \mu=42 ; 41.5 \text { for } \mathrm{F} ; \mathrm{I}) \\ & \operatorname{Ian} Z_{1}=-2.5 / 1.9=-1.315 \\ & \text { Fred } Z_{\mathrm{F}}=-3.0 / 3.2=-0.9375 \end{aligned}$	M1		$\begin{aligned} & z_{1}=(16.5-19) / 1.9=-1.315 \text { or equiv } \\ & z_{\mathrm{F}}=(16.5-19.5) / 3.2=-0.9375 \end{aligned}$
	$\mathrm{P}(\mathrm{T}<39 ; \mathrm{C}<16.5)$:			
	Ian $=1-0.906=0.094$			(0.093~0.095)
	Fred $=1-0.825=0.175$	A1		($0.173 \sim 0.177$) Both
	(or valid argument using correct Zs)			$(-1.31 \sim-1.32)<(-0.935 \sim-0.940)$
	Fred more likely to beat 39 minutes	B1	4	Fred most likely, ignore method
(ii)	Times for cycling section Fred - Ian			Consider F-I or I-F
	$E(F-I)=19.5-19=0.5$	M1		Method for mean \& variance (s.d.)
	$\mathrm{V}(\mathrm{F}-1)=3.2^{2}+1.9^{2}=13.85$			$\mathrm{SD}=3.722$, equivalently I-F
	$\mathrm{P}(\mathrm{F}>\mathrm{I})=\mathrm{P}(\mathrm{Z}>-0.5 / 3.722)$	m1		Standardise 0 , allow $\pm Z$
	$\mathrm{Z}=(\pm) 0.134$	A1		$(\pm) 0.130 \sim 0.140$
	$\mathrm{P}(\mathrm{F}>\mathrm{I})=\mathrm{P}(\mathrm{Z}>-0.134)=0.553$	A1	4	0.553 (0.55 ~0.56)
	Total		13	
	TOTAL		75	

