

General Certificate of Education

Statistics 6380

SS04 Statistics 4

Mark Scheme

2009 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director Genera

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous incorrect result	MC			
C10		MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS04				
Q	Solution	Marks	Total	Comments
1	X = number of days out of 200 when			
	delay occurs.			
(a)		B1	1	
(b)		B1		
	$P(X \ge 3) = 1 - P(X \le 2)$	M1		$P(X \ge 3) = 1 - P(X \le 2)$ using
				Poisson or binominal
	= 1 - 0.9197 = 0.0803	A1	3	AWRT
(c)	**			
	large <i>n</i>	E1		
	and very small <i>p</i> .	E1	2	
• • • •	Total		6	
2(a)	$\overline{x} = 32.75$ $s = 3.059$	B1		Allow 3.06 for sd
	$H_0: \mu = 30$			
	$H_1: \mu > 30$	B1		Both
	1,			
	Test statistic = $\frac{32.75 - 30}{3.059}$	M1		(x-30) / their sd
	$\frac{5.059}{\sqrt{2}}$	m1		Correct sd.
	√8			
	= 2.543	A1		2.54 to 2.55 (B3 by calculator)
	v = 8 - 1 = 7	B1		Allow B1 total for $t = 2.896$
	<i>t</i> = 2.998	B1		Using $v = 8$
	2.543 < 2.998 so cannot reject H ₀ .			
	There is not enough evidence at the 1%			
	significance level to say that the level of		0	
	nitrate pollution is a cause for	A1√	8	ft on ts and critical value
	environmental concern.			Must be 1-tailed test
(b)(i)	$H_0: p = 0.6$			
	H ₁ : <i>p</i> < 0.6	B1		Both
	Under H ₀ , $X \sim B(42, 0.6)$			
	$\approx N(25.2, 10.08)$	B2		B1 mean; B1 variance
				M1 if correct method with wrong <i>n</i>
	16 5-25 2			
	Test statistic = $\frac{16.5 - 25.2}{\sqrt{10.08}} = -2.74$	M1		
		A1		-2.75 to -2.73
	or $\frac{16-25.2}{\sqrt{10.08}} = -2.90$			-2.91 to -2.89
	$\sqrt{10.08}$ 2.50			
	Or using proportions,			
	$Y \sim N(0.6, 0.005714)$	(B2)		B1 if \hat{p} used instead of p
	16 0.6			
	Test statistic = $\frac{42}{42}$ 2.90	(M1)		
	Test statistic = $\frac{\frac{16}{42} - 0.6}{\sqrt{0.005714}} = -2.90$	(A1√)		ft on use of \hat{p}
	z = -2.3263	B1		Accept 2.33; ignore sign
				Allow $t = 2.423$
	ts < critical value so H_0 can be rejected.			
	There is evidence at the 1% level that			
	nitrate pollution is a cause for concern in	A1√	7	ft on ts and z
	less than 60% of the length of rivers in the		,	Exact binomial:
	region			$P(X \le 16) = 0.00338 < 0.01$ full marks
(**)				
(ii)	Assume that the sections tested are chosen	D1	1	
	at random or independent of each other	B1	1	
	Total		16	

Q	Solution	Marks	Total	Comments
3(a)	Y = Number of people using the machine			
	in a 4-hour period.			
	$Y \sim \operatorname{Po}(\lambda) \approx \operatorname{N}(\lambda, \lambda)$			
	<i>z</i> = 1.6449	B1		Accept 1.645, 1.64
	standard error = $\sqrt{47}$			
	90% confidence limits for λ are:			
	$47 \pm 1.6449 \times \sqrt{47}$	M1m1		M1 for sample value + $z \times sd$
				ml for correct sd
	aiving (25.7, 59.2)	A1	4	Allow M1 if 11.75 used
	giving (35.7, 58.3)	AI	4	(35.7 to 35.8, 58.2 to 58.3)
(b)	Mean uses per 4 hours when $outside = 54$			
()	or 90% CI for mean uses per hour when			
	inside is $\left(\frac{35.7}{4}, \frac{58.3}{4}\right)$			
	$\left(\frac{1}{4}, \frac{1}{4} \right)$			
	Mean when outside lies within CI for	B1		Comparison of CI with provious moon
	mean when inside.			Comparison of CI with previous mean
	Not enough evidence to say that fewer people use the machine in its new location			
	while the store is open.			
	There may still be a reduction in use			
	because it is not available outside opening			
	hours.		-	
	Conclusion from confidence interval may be suspect if model used is poor.	B2	3	Any two valid points. Clear explanation based on CI gets 2
	se suspeet if model used is poor.			, c
				Allow B1 if CI based on 54 (or 13.5) a
	Total		7	47 (or 11.75) compared with it
4(a)(i)			1	
	$\hat{p} = \frac{188}{320} = 0.5875$	B1		Allow 0.587, 0.588
	<i>z</i> = 1.96	B1		Here or in (ii)
	95% confidence limits for p are:			
	*			
	$0.5875 \pm 1.96 \times \sqrt{\frac{0.5875 \times 0.4125}{320}}$	M1		Form of CI Here or in (ii)
		M1		Standard error $(0.523 \pm 0.0534, 0.64 \pm 0.642)$
	giving (0.534, 0.641)	A1		(0.533 to 0.534, 0.64 to 0.642)
(ii)	â 117 o 45			
	$\hat{q} = \frac{117}{260} = 0.45$			
	95% confidence limits for q are:			
	$0.45 \pm 1.96 \times \sqrt{\frac{0.45 \times 0.55}{260}}$	2.51		
	$\sqrt{\frac{260}{260}}$	M1		
	giving (0.390, 0.510)	A1	7	(0.389 to 0.39, 0.51 to 0.511)
(b)	The lower bound of the CI for p is greater			
(0)	than the upper bound of the CI for q .	E1		
	It seems likely that females were more	B1	2	B1 allowed for correct conclusion with
	likely than males to vote for Yvonne.			some comparison of CIs

Q	Solution	Marks	Total	Comments
4(c)	Two candidates so Yvonne needs $> 50\%$	E1		May be implied
	of votes.			
	Lower bound for $q > 0.5$ so it is likely that	E1		Indication that more than half of females
	a majority of females voted for her, but	F 1		vote for Yvonne
	the proportion of males could be well under a half.	E1		Doubtful whether more than half of male will vote for Yvonne
	Can't be sure that Yvonne will win.	E1	4	Conclusion based on evidence of CIs
	(Result may depend on numbers of males	LI	4	Conclusion based on evidence of Cis
	and females who vote)			
	Total		13	
5	$X \sim N(110, 5^2)$			
	$Y \sim N(370, 12^2)$			
	1 1(570, 12)			
(a)	$X + Y \sim N(110 + 370, 5^2 + 12^2)$	M1		Means and variances added.
(4)	$X + T \sim N(110 + 570, 5 + 12)$ = N(480, 169)	A1		B1 if mean wrong but variance correct
		111		Di fi mean wrong out variance correct
	$P(X+Y<500) = \Phi\left(\frac{500-480}{13}\right)$	M1		
		1011		
	$=\Phi(1.538)$			1.538 to 1.54
	= 0.938	A1	4	AWRT 0.937 to 0.938
(b)	$3X \sim N(3 \times 110, 9 \times 5^2)$			
	$Y - 3X \sim N(370 - 330, 12^2 + 225)$	B1		B1 for mean
		M2		M1 for $3^2 \times Var(X)$
				M1 for adding variances
	= N(40, 369)	A1		CAO
	P(Y>3X) = P(Y-3X>0)	M1		
	$= 1 - \Phi\left(\frac{0 - 40}{\sqrt{369}}\right)$	1		
	$\left(\sqrt{369}\right)$	m1		or equivalent
	$= \Phi(2.082)$			
	= 0.981	A1	7	AWRT

Q	Solution	Marks	Total	Comments
6(a)	$H_0: p = 0.5$			
	$H_1: p > 0.5$	B1		Both
	Under H ₀ , $X \sim B(14, 0.5)$	B1		
	$P(X \ge 11) = 1 - P(X \le 10)$	M1		
	= 1 - 0.9713			
	= 0.0287	A1		Accept 0.029
	0.0287 < 5% so result is significant at the	E1		Can be gained without previous M marl
	5% level.			
	Evidence suggests that more than half of		r.	
	car park users think it will be too small.	A1√	6	ft on probability
(b)(i)	<i>v</i> =15; <i>t</i> =2.131	B1		
	95% confidence limits for μ are:	_		
	$59.9 \pm 2.131 \times \frac{7.83}{4}$	M1		
	4	ml		sd divided by 4
	giving (55.7, 64.1)	A1	4	(AWRT, 64 to 64.1)
(ii)	65 is above upper confidence limit.	E1	2	
	Seems likely that the claim is true.	B1	2	
(c)(i)	Parent population is (discrete) Poisson but			
	with large mean so closely approximated			
	by normal distribution.	E1		
	Reasonable to accept that CI is valid.	B1	2	
(ii)	$Y \sim \text{Po}(65) \approx \text{N}(65, 65)$	B1		
	$P(Y > 78) = 1 - \Phi\left(\frac{78.5 - 65}{\sqrt{65}}\right)$	M1		B1 for 0.0534 using calculator (no cc)
	$P(T > 78) = 1 - \Phi\left(\frac{1}{\sqrt{65}}\right)$	m1		Continuity correction attempted.
	$=1-\Phi(1.674)$ $=1-0.9529=0.0471$	A1	4	0.047 to 0.0475; CAO
	1 0.7527 = 0.0771	111	-7	B1 for exact Poisson (0.0504)
(d)	P(Y > 78) = probability that smaller car			
	park is full.	E1		
	As μ was taken at the highest reasonable	E1		Significance of μ used
	value, this is a small probability.	E1		Assessment of probability
	It seems likely that the car park will not	B1	4	Based on argument from $P(X > 78)$,
	be too small.			not CI for mean $P(X>78)$ small so car park will not be
				too small gets E1 B1
	Total		22	
	TOTAL		75	