

General Certificate of Education

Statistics 6380

SS04 Statistics unit 4

Mark Scheme

2007 examination - June series

www.theallpapers.com

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

www.theallpapers.com

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
$\sqrt{0}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only RA required accuracy					
AWFW	anything which falls within FW further work					
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

SS04				
Q	Solution	Marks	Total	Comments
1(a)	$\overline{x} = 1023.3$ $s = 525.19$	B1		$1023.3(1020 \sim 1025)$ and $525.2(525 \sim 525.5)$
	95% confidence interval for mean $1023.3 \pm 2.306 \times \frac{525.19}{\sqrt{9}}$	B1 B1√ M1		8 df 2.306 – their df <u>use of their s.d.</u> $\sqrt{9}$
	i.e. 1023.3±403.7 (620, 1427)	m1 A1	6	method for interval 620(619 ~ 620) and 1427(1426.5 ~ 1427.5) or 1430 or
				$1023.3(1020 \sim 1025)$ and $403.7(403 \sim 404)$
(b)	As 1250 lies within the confidence interval, there is no reason to doubt the firm's claim.	B1 B1√	2	accept claim 1250 within interval
	Total		8	
2(a)	$H_0: \mu = 37.3$ $H_1: \mu \neq 37.3$	B1		both hypotheses – must use μ or state 'population'
	$\overline{x} = 45.1$ $s = 9.2039$ 45.1 - 37.3	B1		45.1 CAO and 9.20(9.19 ~ 9.21) use of their s.d.
	$t = \frac{45.1 - 37.3}{\frac{9.2039}{\sqrt{10}}}$	M1 m1		$\sqrt{10}$ correct method for <i>t</i> (ignore sign)
	= 2.68 c.v. $t_9 \pm 2.262$	A1 B1		2.68(2.675 ~ 2.685) 9 df
	Reject H_0 : there is significant evidence	B1√ A1√		$2.262(2.26 \sim 2.262)$ (ignore sign) correct conclusion their figures,
	that mean number of hours worked during the second week of December			requires m1 and comparison with correct tail of t
	2004, by females employed full-time by this store is not equal (greater than) to 37.3 SC confidence interval (38.52, 51.68) compare with 37.3	A1√	9	conclusion in context – requires previous A1 \checkmark and earlier m1
	SC non-standardised c.v. (30.72, 43.88) compare with 45.1 SC <i>p</i> -values compare 0.0126 with 0.025 or 0.0252			
	with 0.05			
(b)	store likely to be busy before Christmas so staff may work extra hours	E1 E1	2	Christmas any reasonable explanation e.g. busy/longer opening hours
	Total		11	

<u>SS04 (cont)</u>	G 1 4		T 4 1	Q (
Q	Solution	Marks	Total	Comments
3 (a)	$H_0: p = 0.2$ $H_1: p > 0.2$	B1		both hypotheses correct – allow
J(a)	$11_0 \cdot p = 0.2$ $11_1 \cdot p > 0.2$	DI		$p = 0.8, p < 0.8$ – disallow \hat{p}
	P(150, 0, 2) 1	B1		p = 0.0, p < 0.0 distribution $pB(150,0.2/0.8) – may be implied$
	$B(150,0.2) \rightarrow normal$	B1 B1		attempt at normal approx
	mean $150 \times 0.2 = 30$	M1		method for mean
	s.d. $\sqrt{150 \times 0.2 \times 0.8} = 0.48990$	M1		method for s.d./variance – allow use of \hat{p}
	(variance = 24)			
	$z = \frac{35.5 - 30}{4.899} = 1.12$	M1		method for z – ignore sign and no or
	4.899	1111		incorrect c.c. – disallow \hat{p}
				-
		A1		$1.12(1.11 \sim 1.13)$ or $1.22(1.22 \sim 1.23)$,
				negative needed if $p = 0.8$ used
	c.v. = 1.6449	B1		1.6449 – ignore sign
	accept H ₀	A1√		needs m mark and comparison with
				correct tail of z
	no significant evidence to reject the credit	E1	10	In context – needs A1 $$ mark
	companies claim	21	10	
	SC p-values			
	compare 0.131 or 0.111 with 0.05			allow max B1 B1 B1 B0 A1 \checkmark E1
	SC exact binomial compare 0.1317 with 0.05			
	compare 0.1317 with 0.05			
(b)	$H_0: p = 0.2$ $H_1: p > 0.2$	B1		both hypotheses – don't penalise same
				mistake as in (a)
	B(11.0.2)	B1		B(11, 0.2/0.8)
				attempt to calculate P(7 or more);
	P(7 or more) = 1 - 0.9980	M1		generous
				Note: $1 - 0.9998 = 0.0002$ is P(8 or
				more), and ∴ incorrect
	= 0.002	A1		$0.002(0.00195 \sim 0.002)$
	0.002 < 0.01 reject H ₀ : significant	A1√		needs correct method for P(7 or more)
	evidence to reject the credit companies	'		
	claim. Conclude less than 80% of	E1	6	in context – needs A1 \checkmark mark
	European hotels will accept the card			
	SC c.v.			
	6 or more (nearest to 1%)			only allow first 3 marks if
	7 or more (less than 1%)			approximations attempted
(c)	1 5	E1		apparent contradiction
	claim but large sample didn't. This is			
	very unlikely (but not impossible if both tests valid) Sheila's sample	E1		possible but uplikaly/Shaila's sample
	probably not random – probably	EI		possible but unlikely/Sheila's sample not random so second test not valid
	geographically localised and similar	E1		possible reason why non-random
	price ranges – so second test probably			
	not valid.	E1	4	second reason
	Total		20	

S04 (cont)				
Q	Solution	Marks	Total	Comments
4 (a)	$z = \frac{90 - 63}{18} = 1.5$	M1		method for z – ignore sign
	probability $> 90 = 1 - 0.93319$	m1		completely correct method
	= 0.0668	A1	3	$0.0668(0.0668 \sim 0.067)$
			_	
(b)(i)	total time is normal			
	mean $3 \times 63 = 189$	M1		method for mean
	s.d. $\sqrt{3 \times 18^2} = 31.177$	M1		method for s.d./variance
	(variance 972)			
(b)(ii)	$z = \frac{135 - 189}{31.177} = -1.732$	m1		method for z – ignore sign
	31.177 probability < 135	m1		completely correct method
	= 0.9584 = 0.0416	m1 A1	5	completely correct method $0.0416(0.0415 \sim 0.042)$
	= 0.9384 = 0.0410	AI	3	$0.0410(0.0415 \sim 0.042)$
				attempt to find distribution of difference
(c)	$Q_3 - Q_7 \rightarrow \text{normal}$	M1		between 3 normal checkouts and 7
	mean $3 \times 63 - 7 \times 25 = 14$	M1		express checkouts method for mean and s.d. of 7 at
	$11000 - 7 \times 23 - 14$	1011		express checkout (may be implied)
		M1		method for mean $Q_3 - Q_7 / Q_7 - Q_3$
	standard deviation $\sqrt{3 \times 18^2 + 7 \times 8^2}$	M1		method for s.d./variance $Q_3 - Q_7$
	standard deviation $\sqrt{3 \times 18^2} + 1 \times 8^2$			their answer to (b)(i)
	27.69	m1		method for s.d./variance $Q_3 - Q_7$
	= 37.68 (variance = 1420)			
	$z = \frac{14 - 0}{37.68} = 0.3715$	m1		correct method – ignore sign of z
	probability time for 3 exceeds time for 7			
	is 0.645	A1	7	$0.645(0.643 \sim 0.646)$
(d)	amount in baskets of queue members/	E1		sensible suggestion
()	attractiveness/speed/demeanour of			
	checkout assistant/presence of noisy			
	children in queue	E1	2	sensible suggestion
	Total		17	
	Total		1/	

04 (cont)	~ • ·			~
Q	Solution	Marks	Total	Comments
5(a)	95% confidence interval	B1		1.96
S(u)	$136 \pm 1.96\sqrt{136}$	B1		s.d. $\sqrt{136}$
	136±22.86	M1		correct method – allow incorrect z
	(113, 159)	A1	4	113(113 - 113.2) and $159(158.8 - 159)$
	(115, 159)	AI	4	
				or 136 and 22.9(22.8 ~ 23)
(b)	$\hat{p} = \frac{22}{136} = 0.16176$	B1		$\frac{22}{136}$ ACF
()	100	21		136
	99% confidence interval			2.5550
	$0.16176 \pm 2.5758 \times \sqrt{0.16176} \times \frac{0.83823}{136}$	B1		2.5758
	136	M1		use of $\hat{p} \pm z \times$ their s.d.
	0.16176 ± 0.08133	M1		method for s.d. completely correct method – allow
	0.10170 ± 0.00135	m1		incorrect z
	(0.080, 0.243)	A1	6	0.080(0.080~0.081) and
		731	0	$0.243(0.2425 \sim 0.2435)$ or
				$0.162(0.161 \sim 0.162)$ and
				$0.0813(0.081 \sim 0.0815)$
(c)	$B(170,0.25) \rightarrow$	B1		B(170,0.25) may be implied
	normal mean $170 \times 0.25 = 42.5$	B1		attempt at normal approx
	s.d. $\sqrt{170 \times 0.25 \times 0.75} = 5.6458$	M1		method for mean and s.d./variance
	(variance 31.875)			
	$z = \frac{60.5 - 42.5}{5.6458} = 3.188$	M1		method for z – allow no or incorrect c.c.
	probability > 60 is $1 - 0.99928$	m1		completely correct method
	= 0.0007	A1	6	0.0007(0.00069~0.00074)
	SC exact binomial			
	0.00104 allow B1 B1 only			
(d)	Assumes more than average number of	E1		above <i>average</i> number of customers
(u)	customers will enter bank (170 above			assumed/above <i>average</i> proportion
	c.i. in (a)) and more than average			require senior member of staff
	proportion of these will require a senior			•
	member of staff (0.25 above c.i. in (b)).	E1		outside confidence interval
	Even on these assumptions there is a	F 1	2	
	very small chance that insufficient senior staff will be available. Barnabas	E1	3	very small probability of insufficient senior staff being available/Barnabas
	is being very cautious.			very cautious
			10	
	Total		<u>19</u> 75	
	TOTAL		75	