

QUALIFICATIONS
ALLIANCE

General Certificate of Education

Statistics 6380

SS04 Statistics unit 4

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

| M | mark is for method | |
| :--- | :--- | :--- | :--- |
| m or dM | mark is dependent on one or more M marks and is for method | |
| A | mark is dependent on M or m marks and is for accuracy | |

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS04

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)

(b) \& \begin{tabular}{l}
$$
\bar{x}=1023.3 \quad s=525.19
$$

95\% confidence interval for mean
$$
1023.3 \pm 2.306 \times \frac{525.19}{\sqrt{9}}
$$

i.e. 1023.3 ± 403.7

$(620,1427)$

As 1250 lies within the confidence interval, there is no reason to doubt the firm's claim.

 \&

B1

B1

B1 $\sqrt{ }$

M1

m1

A1

B1

B1 $\sqrt{ }$

 \& 2 \&

1023.3(1020~1025) and

525.2(525~525.5)

8 df

2.306 - their df

use of their s.d.

$$
\sqrt{9}
$$

method for interval

620 (619~620) and

1427(1426.5~1427.5) or 1430 or

1023.3(1020~1025) and

403.7 (403 ~ 404)

accept claim

1250 within interval
\end{tabular}

\hline \& Total \& \& 8 \&

\hline 2(a) \& | $\begin{aligned} & \mathrm{H}_{0}: \mu=37.3 \quad \mathrm{H}_{1}: \mu \neq 37.3 \\ & \bar{x}=45.1 \quad s=9.2039 \\ & t=\frac{45.1-37.3}{\frac{9.2039}{\sqrt{10}}} \\ & =2.68 \\ & \text { c.v. } t_{9} \pm 2.262 \end{aligned}$ |
| :--- |
| Reject H_{0} : there is significant evidence that mean number of hours worked during the second week of December 2004, by females employed full-time by this store is not equal (greater than) to 37.3 |
| SC confidence interval (38.52, 51.68) compare with 37.3 SC non-standardised c.v. (30.72, 43.88) compare with 45.1 |
| SC p-values compare 0.0126 with 0.025 or 0.0252 with 0.05 |
| store likely to be busy before Christmas so staff may work extra hours | \& | B1 |
| :--- |
| B1 |
| M1 |
| m1 |
| A1 |
| B1 |
| B1 $\sqrt{ }$ |
| A1」 |
| A1」 | \& 9

2 \& | both hypotheses - must use μ or state 'population' |
| :--- |
| 45.1 CAO and 9.20(9.19~9.21) |
| use of their s.d. $\sqrt{10}$ |
| correct method for t (ignore sign) $2.68(2.675 \sim 2.685)$ |
| 9 df |
| 2.262(2.26~2.262) (ignore sign) |
| correct conclusion their figures, requires m 1 and comparison with correct tail of t conclusion in context - requires previous A1 \checkmark and earlier m1 |
| Christmas any reasonable explanation e.g. busy/longer opening hours |

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

SS04 (cont)

SS04 (cont)

SS04 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} & 95 \% \text { confidence interval } \\ & 136 \pm 1.96 \sqrt{136} \\ & 136 \pm 22.86 \\ & (113,159) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	1.96 s.d. $\sqrt{136}$ correct method - allow incorrect z $113(113 \sim 113.2)$ and $159(158.8 \sim 159)$ or 136 and $22.9(22.8 \sim 23)$
(b)	$\hat{p}=\frac{22}{136}=0.16176$	B1		$\frac{22}{136} \mathrm{ACF}$
	$\begin{aligned} & 0.16176 \pm 2.5758 \times \sqrt{0.16176} \times \frac{0.83823}{136} \\ & 0.16176 \pm 0.08133 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~m} 1 \end{aligned}$		2.5758 use of $\hat{p} \pm z \times$ their s.d. method for s.d. completely correct method - allow incorrect z
	$(0.080,0.243)$	A1	6	$\begin{aligned} & 0.080(0.080 \sim 0.081) \text { and } \\ & 0.243(0.2425 \sim 0.2435) \text { or } \\ & 0.162(0.161 \sim 0.162) \text { and } \\ & 0.0813(0.081 \sim 0.0815) \end{aligned}$
(c)	$\begin{aligned} & \mathrm{B}(170,0.25) \rightarrow \\ & \text { normal mean } 170 \times 0.25=42.5 \\ & \text { s.d. } \sqrt{170 \times 0.25 \times 0.75}=5.6458 \\ & \\ & \quad \text { (variance 31.875) } \end{aligned}$	B1 B1 M1		$B(170,0.25)$ may be implied attempt at normal approx method for mean and s.d./variance
	$z=\frac{60.5-42.5}{5.6458}=3.188$ probability > 60 is $1-0.99928$ $=0.0007$ SC exact binomial 0.00104 allow B1 B1 only	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	6	method for z - allow no or incorrect c.c. completely correct method $0.0007(0.00069 \sim 0.00074)$
(d)	Assumes more than average number of customers will enter bank (170 above c.i. in (a)) and more than average	E1		above average number of customers assumed/above average proportion require senior member of staff
		E1		outside confidence interval
	very small chance that insufficient senior staff will be available. Barnabas is being very cautious.	E1	3	very small probability of insufficient senior staff being available/Barnabas very cautious
	Total		19	
	TOTAL		75	

