

General Certificate of Education

Statistics 6380

SS04 Statistics 4

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks		
A	mark is is for method		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
Vor ft or F	follow through from previous incorrect result		
CAO	correct answer only	MC	mis-copy
CSO	correct solution only	MR	mis-read
AWFW	anything which falls within	RA	required accuracy
AWRT	anything which rounds to	FW	further work
ACF	any correct form	ISW	ignore subsequent work
AG	answer given	FIW	from incorrect work
SC	special case	BOD	given benefit of doubt
OE	or equivalent	WR	work replaced by candidate
A2,1	2 or 1 (or 0) accuracy marks	formulae book	
$-x$ EE	deduct x marks for each error	NOS	not on scheme
NMS	no method shown	graph	
PI	possibly implied	c	candidate
SCA	substantially correct approach	dp	significant figure(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS04

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Binomial } n=50 \quad p=34 / 50=0.68 \\
\& \rightarrow \text { normal mean } 34, \\
\& \text { s.d. } \sqrt{34 \times 0.32}=3.298 \\
\& \\
\& 95 \% \text { confidence interval for } p \text { is } \\
\& 0.68 \pm 1.96 \times \sqrt{0.68 \times 0.32 / 50} \\
\& 0.68 \pm 0.129 \\
\& 0.551 \sim 0.809
\end{aligned}
\] \\
Since 0.9 lies above the interval the cyclist's claim is not supported
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
m1 \\
M1 \\
B1 \\
A1 \\
B1 \\
E1V
\end{tabular} \& 6

2 \& | B1 $p=34 / 50$ or $16 / 50$ acf M1 attempt to use normal ml correct method for mean and s.d. for number or proportion M1 method for confidence interval B1 1.96 |
| :--- |
| A1 $0.551(0.55 \sim 0.551)$ and 0.809 ($0.809 \sim 0.81$) allow in \pm form |
| B1 0.9 lies above interval - based on correct method E1 \checkmark correct conclusion their interval |

\hline \& \& Total \& 8 \&

\hline 2(a)(i) \& $$
\left.\left.\begin{array}{l}
\text { Binomial } n=20000 p=0.0001 \\
\rightarrow \text { Poisson, mean } 20000 \times 0.0001=2 \\
\mathrm{P}(0)=0.135
\end{array}\right] \begin{array}{l}
\mathrm{P}(>5)=1-\mathrm{P}(5 \text { or fewer }) \\
\quad=1-0.9834=0.0166 \\
\text { Binomial } n=80 p=0.32 \\
\rightarrow \text { Normal, mean } 80 \times 0.32=25.6 \\
\text { variance }=80 \times 0.32 \times 0.68=17.408 \\
\text { s.d. }=4.1723
\end{array}\right] \begin{aligned}
& \mathrm{z}=(20.5-25.6) / 4.1723=-1.2223 \\
& \mathrm{P}(>20)=0.889
\end{aligned}
$$ \& B1B1

M1
A1
M11
A1
B1
M1
A1

M1
m1
A1 \& 4
2

6 \& | B1 binomial |
| :--- |
| B1 20000 and 0.0001 |
| M1 Poisson mean $20000 \times 0.0001-$ |
| allow slip |
| A1 0.135 ($0.135 \sim 0.136$) |
| M1 $\mathrm{P}(>5)=1-\mathrm{P}(5$ or fewer $)$ |
| A1 0.0166 ($0.016 \sim 0.017$) |
| B1 B($80,0.32$) |
| M1 attempt at normal approx |
| A 1 mean $=25.6$ |
| variance $=17.408(17.4 \sim 17.41)$ |
| or s.d. $=4.17(4.17 \sim 4.175)$ |
| disallow if wrongly used |
| M1 method for z-ignore sign and c.c. |
| m 1 correct attempt at c.c.- ignore sign of z |
| A1 0.889 ($0.888 \sim 0.89)$ |

\hline \& \& Total \& 12 \&

\hline 3(a) \& | $\begin{aligned} \bar{x} & =29.5125 \quad s=8.6331 \\ \mathrm{H}_{0} & : \mu=37.5 \mathrm{H}_{1}: \mu<37.5 \\ t & =(29.5125-37.5) /(8.6331 / \sqrt{8}) \\ & =-2.62 \end{aligned}$ |
| :--- |
| c.v. $t_{7}-1.895$ |
| Reject H_{0} There is significant evidence that the mean amount of fuel bought by a customer on each visit is less than 37.5 litres. | \& | B1 |
| :--- |
| B1 |
| M1 |
| m1 |
| A1 |
| B1 |
| B1 \checkmark |
| A1 \checkmark |
| $\mathrm{A} 1 \checkmark$ | \& \& | B1 29.5 (29.5~29.52) and 8.63 |
| :--- |
| 8.63~8.64) |
| B1 both hypotheses |
| M1 use of their s.d. $/ \sqrt{8}$ |
| m 1 method for t - ignore sign |
| A1 -2.62 (2.61~2.62) |
| B1 7df |
| B1 $\checkmark 1.895-$ their df |
| A1 \checkmark conclusion must be compared with lower tail of t and not inconsistent with their H_{0}. Allow arithmetic errors and incorrect t -values only |
| $\mathrm{A} 1 \checkmark$ in context - requires previous A mark |

\hline
\end{tabular}

SS04 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 3(b) \& \begin{tabular}{l}
\[
\mathrm{H}_{0}: \lambda=168 \mathrm{H}_{1}: \lambda<168
\] \\
Poisson mean \(168 \rightarrow \mathrm{~N}(168,168)\)
\[
\begin{aligned}
\& z=(142.5-168) / \sqrt{168}=-1.97 \\
\& {[\text { or }(142-168) / \sqrt{168}=-2.01} \\
\& \text { or }(71-84) / \sqrt{84 / 2}=-2.01] \\
\& \text { c.v. }-2.3263
\end{aligned}
\] \\
Accept \(\mathrm{H}_{0}\), no significant evidence at \(1 \%\) level to show that mean number of customers has been reduced. \\
or \(p=0.024(0.024 \sim 0.025)\) \\
or \(0.022(0.022 \sim 0.023)\) \\
compare with 0.01
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 \\
B1 A1V
\[
\operatorname{Alv}
\]
\end{tabular} \& 7 \& \begin{tabular}{l}
B1 hypotheses - allow \(\lambda=84\) \\
M1 attempt at normal approximation \\
M1 method for \(z\)-ignore sign \\
A1 - 1.97 (\(-1.96 \sim-1.97\)) \\
or \(-2.01(-2.00 \sim-2.01)\) \\
B1 -2.3263 ignore sign \\
A1 \(\checkmark\) conclusion - must be compared with lower tail of \(z\) \\
A1 \(\checkmark\) in context - requires previous A mark
\end{tabular} \\
\hline (c) \& \begin{tabular}{l}
\[
\mathrm{H}_{0}: p=0.20 \mathrm{H}_{1}: p>0.20
\] \\
Binomial \(n=20 p=0.2\)
\[
\begin{aligned}
\mathrm{P}(5 \text { or more }) \& =1-0.6296 \\
\& =0.370 \\
\& >0.1
\end{aligned}
\] \\
Accept \(\mathrm{H}_{0}\), no significant evidence that the proportion of customers who do not buy fuel has increased.
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
Alv \\
A1 \(\sqrt{ }\)
\end{tabular} \& 5 \& \begin{tabular}{l}
B1 hypotheses \\
M1 use of binomial \(n=20 p=0.2\) \\
A1 0.370 (0.37~0.371) \\
A \(1 \checkmark\) conclusion - requires comparison of value from \(B(20,0.2)\) with 0.1 \\
A1 \(\checkmark\) in context - requires previous A mark
\end{tabular} \\
\hline \multirow[t]{3}{*}{(d)} \& There is significant evidence that the amount of fuel bought on each visit has reduced. There is some evidence of reduction in the number of customers - at least on Friday afternoon but this evidence is not significant at the \(1 \%\) level. \& E1 \(\checkmark\)
E1 \(\checkmark\) \& \& E1 \(\checkmark\) Any point consistent with their results E1 \(\checkmark\) second point consistent their results E1 three points based on correct results and methods \\
\hline \& No significant evidence that the proportion of customers who do not buy fuel has increased. Overall he is right to be concerned. \& E1
E1 \& 4 \& E1 earned either for overall comment or for comment that there is evidence of a reduction in number of customers but it is not significant. \\
\hline \& \& Total \& 25 \& \\
\hline 4(a)
(b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& z=(120-110) / 25=0.4 \\
\& \mathrm{P}(<120)=0.65542
\end{aligned}
\] \\
\(2 T\) is normally distributed with mean 220 minutes and standard deviation 50 minutes.
\[
z=(180-220) / 50=-0.8
\] \\
probability taxi before noon is
\[
1-0.78814=0.212
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 3

4 \& | M1 attempt to find probability of <120 minutes, from normal. M1 method for probability their minutes- allow wrong tail A1 0.655 (0.655~0.656) |
| :--- |
| B1 mean 220 |
| B1 s.d. 50 or variance $=2500$ |
| M1 method - including method for distribution of $2 T$ - allow wrong tail and slip in number of minutes to 12 noon A1 $0.212(0.211 \sim 0.213)$ |

\hline
\end{tabular}

SS04 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 4(c)
(d)(i)

(ii) \& \begin{tabular}{l}
Time for two appeals plus break is $T_{1}+B+T_{2}$

normally distributed with
$$
\text { mean }=110+12+110=232
$$

Variance $25^{2}+4^{2}+25^{2}=1266$

standard deviation $=35.58$
$$
z=(180-232) / \sqrt{1266}=-1.461
$$

Probability second appeal not completed by noon is 0.928

$B+T_{2}-T_{1}$ has mean 12 and standard deviation 35.58 .
$$
\begin{aligned}
& z=12 / \sqrt{1266}=0.3373 \\
& \mathrm{P}(<0)=1-0.632=0.368
\end{aligned}
$$

Taxi is due T_{1} minutes after first appeal is completed. Second appeal is completed B $+T_{2}$ minutes after first appeal is completed.

\therefore Second appeal completed before taxi due if $B+T_{2}<T_{1} \quad$ i.e. $B+T_{2}-T_{1}<0$

 \&

M1

M1

A1

m1

A1

M1

m1

A1

E1

E1
\end{tabular} \& 5

3
3

2 \& | M1 method for mean |
| :--- |
| M1 method for s.d. or variance Allow for adding variances of independent variables even if model incorrect |
| A1 232 and 35.58 or 1266 |
| ml correct method allow wrong tail and slip in number of minutes to 12 noon A1 0.928 ($0.9275 \sim 0.9285$) |
| M1 method for mean and s.d./variance |
| m1 method - allow wrong tail A1 0.368 ($0.366 \sim 0.371$) |
| E1 reasonable attempt |
| E1 complete explanation |

\hline \& \& Total \& 17 \&

\hline 5(a)(i) \& | $\bar{x}=134.51 \quad s=1.0181$ |
| :--- |
| 95% confidence interval for mean $134.51 \pm 2.262 \times 1.0181 / \sqrt{10}$ $\begin{aligned} & 134.51 \pm 0.728 \\ & 133.78 \sim 135.24 \end{aligned}$ |
| As all lengths start with $13,3 \mathrm{sf}$ is in effect 1 sf which is too few. |
| or |
| Width of confidence interval is 1.456 - if the limits had been rounded to 3 sf the width would have apparently been 1 - a large \% error. |
| Statement 1 C; Interval is based on the sample mean. There is no reason why 95% of individual lengths should lie in the interval. There is a very small possibility that it could occur by chance. |
| Statement 2 C; this would be true for an interval based on a known population mean and s.d. using z. It is extremely unlikely to be true of an interval based on estimates and t. |
| Statement 3 D; the interval is centred on x and so is certain to contain x. | \& | B1 |
| :--- |
| M1 |
| m1 |
| B1 |
| B1 |
| A1 |
| E1 |
| B1 |
| E1 |
| B1 |
| E1 |
| B1 |
| E1 | \& 6

1

6 \& | B1 134.51 (134.5 ~ 134.52) and 1.0181 ($1.018 \sim 1.02$) |
| :--- |
| M1 use of their s.d $\sqrt{10}$ |
| m 1 correct method for t |
| B1 9df |
| B1 $\sqrt{ } 2.262$ their df |
| A1 133.78 and 135.24 from correct |
| working AG |
| E1 reason |
| B1 C |
| E1 explanation - allow both marks for a good explanation even if option D chosen. |
| B1 C |
| E1 explanation-allow both marks for a good explanation even if option D chosen. |
| B1 D |
| E1 explanation |

\hline \& Total \& \& 13 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

