

# **General Certificate of Education**

# **Statistics 6380**

## SS04 Statistics 4

# **Mark Scheme**

2010 examination – January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director Genera

## Key to mark scheme and abbreviations used in marking

| М          | mark is for method                                                 |                      |                            |  |  |
|------------|--------------------------------------------------------------------|----------------------|----------------------------|--|--|
| m or dM    | mark is dependent on one or more M marks and is for method         |                      |                            |  |  |
| А          | mark is dependent on M or m marks and is for accuracy              |                      |                            |  |  |
| В          | mark is independent of M or m marks and is for method and accuracy |                      |                            |  |  |
| Е          | mark is for explanation                                            |                      |                            |  |  |
|            |                                                                    |                      |                            |  |  |
| or ft or F | follow through from previous                                       |                      |                            |  |  |
|            | incorrect result                                                   | MC                   | mis-copy                   |  |  |
| CAO        | correct answer only                                                | MR                   | mis-read                   |  |  |
| CSO        | correct solution only                                              | RA required accuracy |                            |  |  |
| AWFW       | anything which falls within                                        | FW further work      |                            |  |  |
| AWRT       | anything which rounds to ISW ignore subsequent work                |                      |                            |  |  |
| ACF        | any correct form                                                   | FIW                  | from incorrect work        |  |  |
| AG         | answer given                                                       | BOD                  | given benefit of doubt     |  |  |
| SC         | special case                                                       | WR                   | work replaced by candidate |  |  |
| OE         | or equivalent                                                      | FB                   | formulae book              |  |  |
| A2,1       | 2 or 1 (or 0) accuracy marks                                       | NOS                  | not on scheme              |  |  |
| -x EE      | deduct x marks for each error                                      | G                    | graph                      |  |  |
| NMS        | no method shown c candidate                                        |                      |                            |  |  |
| PI         | possibly implied                                                   | sf                   | significant figure(s)      |  |  |
| SCA        | substantially correct approach dp decimal place(s)                 |                      |                            |  |  |

### No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

### Otherwise we require evidence of a correct method for any marks to be awarded.

| SS04    |                                                                                                                                                         |                             |       |                                                                                                                                                                                                                                            |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q       | Solution                                                                                                                                                | Marks                       | Total | Comments                                                                                                                                                                                                                                   |
| 1(a)    | Binomial $n = 50$ $p = 34/50 = 0.68$<br>$\rightarrow$ normal mean 34,<br>s.d. $\sqrt{34 \times 0.32} = 3.298$                                           | B1<br>M1<br>m1              |       | B1 $p = 34/50$ or $16/50$ acf<br>M1 attempt to use normal<br>m1 correct method for mean and s.d.                                                                                                                                           |
|         | 95% confidence interval for p is<br>$0.68 \pm 1.96 \times \sqrt{0.68 \times 0.32/50}$<br>$0.68 \pm 0.129$<br>$0.551 \sim 0.809$                         | M1<br>B1<br>A1              | 6     | for number or proportion<br>M1 method for confidence interval<br>B1 1.96<br>A1 $0.551(0.55 \sim 0.551)$ and $0.809$<br>( $0.809 \sim 0.81$ ) allow in ± form                                                                               |
| (b)     | Since 0.9 lies above the interval the cyclist's claim is not supported                                                                                  | B1<br>E1√                   | 2     | B1 0.9 lies above interval - based on correct method $E1$ correct conclusion their interval                                                                                                                                                |
|         |                                                                                                                                                         | Total                       | 8     |                                                                                                                                                                                                                                            |
| 2(a)(i) | Binomial $n = 20000 \ p = 0.0001$<br>$\rightarrow$ Poisson, mean $20000 \times 0.0001 = 2$<br>P(0) = 0.135                                              | B1B1<br>M1<br>A1            | 4     | B1 binomial<br>B1 20000 and 0.0001<br>M1 Poisson mean 20000×0.0001-<br>allow slip<br>A1 0.135 (0.135 ~ 0.136)                                                                                                                              |
| (ii)    | P(>5) = 1 - P(5  or fewer)<br>= 1 - 0.9834 = 0.0166                                                                                                     | M1<br>A1                    | 2     | M1 P(>5) = $1 - P(5 \text{ or fewer})$<br>A1 0.0166 ( 0.016 ~ 0.017 )                                                                                                                                                                      |
| (b)     | Binomial $n = 80 p = 0.32$<br>$\rightarrow$ Normal, mean $80 \times 0.32 = 25.6$<br>variance $= 80 \times 0.32 \times 0.68 = 17.408$<br>s.d. $= 4.1723$ | B1<br>M1<br>A1              |       | B1 B(80,0.32)<br>M1 attempt at normal approx<br>A1 mean = $25.6$<br>variance = $17.408 (17.4 \sim 17.41)$<br>or s.d. = $4.17 (4.17 \sim 4.175)$<br>disallow if wrongly used                                                                |
|         | z = (20.5 - 25.6)/4.1723 = -1.2223<br>P(>20) = 0.889                                                                                                    | M1<br>m1                    | 6     | M1 method for z - ignore sign and c.c.<br>m1 correct attempt at c.c ignore sign<br>of z<br>$A10.889(0.888 \approx 0.89)$                                                                                                                   |
|         |                                                                                                                                                         |                             | 0     | A1 0.889 $(0.888 \sim 0.89)$                                                                                                                                                                                                               |
| 3(a)    | $\overline{x} = 295125$ $s = 86331$                                                                                                                     | I otal<br>R1                | 12    | B1 29 5 (29 5-29 52) and 8 63                                                                                                                                                                                                              |
| 5(a)    | $H_0: \mu = 37.5 H_1: \mu < 37.5$                                                                                                                       | B1<br>B1                    |       | 8.63~8.64)<br>B1 both hypotheses                                                                                                                                                                                                           |
|         | $t = (29.5125 - 37.5)/(8.6331/\sqrt{8})$<br>= -2.62<br>c.v. t <sub>7</sub> -1.895                                                                       | M1<br>m1<br>A1<br>B1<br>B1√ |       | M1 use of their s.d./ $\sqrt{8}$<br>m1 method for <i>t</i> - ignore sign<br>A1 -2.62 (2.61 ~ 2.62)<br>B1 7df<br>B1 $\sqrt{1.895}$ - their df                                                                                               |
|         | Reject $H_0$ There is significant evidence<br>that the mean amount of fuel bought by<br>a customer on each visit is less than<br>37.5 litres.           | A1√<br>A1√                  | 9     | A1 $\checkmark$ conclusion must be compared<br>with lower tail of t and not inconsistent<br>with their H <sub>0</sub> . Allow arithmetic errors<br>and incorrect t-values only<br>A1 $\checkmark$ in context - requires previous A<br>mark |

| <b>SS04</b> | (cont) |
|-------------|--------|
| 0001        | (conc) |

| Q           | Solution                                                                           | Marks | Total | Comments                                                         |
|-------------|------------------------------------------------------------------------------------|-------|-------|------------------------------------------------------------------|
| <b>3(b)</b> | $H_0: \lambda = 168 H_1: \lambda < 168$                                            | B1    |       | B1 hypotheses - allow $\lambda = 84$                             |
|             | Poisson mean $168 \rightarrow N(168, 168)$                                         | M1    |       | M1 attempt at normal approximation                               |
|             | $z = (142.5 - 168) / \sqrt{168} = -1.97$                                           | M1    |       | M1 method for $z$ –ignore sign                                   |
|             | $[or (142 - 168)/\sqrt{168} = -2.01$                                               | Al    |       | A1 $-1.9/(-1.96 \sim -1.9/)$<br>or $-2.01(-2.00 \sim -2.01)$     |
|             | or $(71 - 84)/\sqrt{84/2} = -2.01$ ]                                               | B1    |       | B1 –2.3263 ignore sign                                           |
|             | c.v. –2.3263                                                                       | A1√   |       | A1 $\checkmark$ conclusion - must be compared                    |
|             | Accept $H_0$ , no significant evidence at 1%                                       |       |       | with lower tail of $z$                                           |
|             | level to show that mean number of                                                  | A 1 A | 7     | A1 <sup>A</sup> in contact, maning maring                        |
|             | customers has been reduced.                                                        | AI√   | /     | A l $\checkmark$ In context - requires previous                  |
|             | 0.024(0.024, 0.025)                                                                |       |       | A mark                                                           |
|             | or $p = 0.024 (0.024 \sim 0.025)$                                                  |       |       |                                                                  |
|             | compare with $0.01$                                                                |       |       |                                                                  |
|             | compare with 0.01                                                                  |       |       |                                                                  |
| (c)         | $H_0: p = 0.20 H_1: p > 0.20$                                                      | B1    |       | B1 hypotheses                                                    |
|             | Binomial $n = 20 p = 0.2$                                                          | M1    |       | M1 use of binomial $n = 20 p = 0.2$                              |
|             | P(5  or more) = 1 - 0.6296                                                         |       |       |                                                                  |
|             | = 0.370                                                                            | A1    |       | A1 0.370 ( 0.37~0.371)                                           |
|             | >0.1                                                                               | Al√`  |       | Al $$ conclusion - requires comparison                           |
|             | Accept $H_0$ , no significant evidence that the properties of customers who do not | A1.   | 5     | of value from $B(20,0.2)$ with 0.1                               |
|             | huv fuel has increased                                                             | AIV   | 5     | A mark                                                           |
|             | buy fuer has mereased.                                                             |       |       |                                                                  |
| (d)         | There is significant evidence that the                                             | E1√   |       | E1 $\checkmark$ Any point consistent with                        |
|             | amount of fuel bought on each visit has                                            |       |       | their results                                                    |
|             | reduced. There is some evidence of                                                 | E1√   |       | E1 second point consistent their                                 |
|             | reduction in the number of customers - at                                          |       |       | results                                                          |
|             | least on Friday afternoon but this                                                 |       |       | El three points based on correct results                         |
|             | level                                                                              |       |       | and methods                                                      |
|             |                                                                                    |       |       |                                                                  |
|             | No significant evidence that the                                                   | E1    |       | E1 earned either for overall comment or                          |
|             | proportion of customers who do not buy                                             |       |       | for comment that there is evidence of a                          |
|             | fuel has increased. Overall he is right to                                         |       |       | reduction in number of customers but it                          |
|             | be concerned.                                                                      | E1    | 4     | is not significant.                                              |
|             |                                                                                    | Total | 25    |                                                                  |
| A(a)        | z = (120 - 110)/25 = 0.4                                                           | M1    |       | M1 attempt to find probability of                                |
| 4(a)        | 2 (120 110)/23 = 0.7                                                               | 1111  |       | <120 minutes from normal                                         |
|             | P(<120) = 0.65542                                                                  | M1    |       | M1 method for probability their                                  |
|             |                                                                                    |       |       | minutes- allow wrong tail                                        |
|             |                                                                                    | A1    | 3     | A1 0.655 (0.655~0.656)                                           |
| (b)         | 2T is normally distributed with mean 220                                           | B1    |       | B1 mean 220                                                      |
|             | minutes and standard deviation 50                                                  | B1    |       | B1 s.d. 50 or variance $= 2500$                                  |
|             | minutes.                                                                           | 3.5-  |       | M1 method - including method for                                 |
|             | z = (180 - 220)/50 = -0.8                                                          | M1    |       | distribution of $2T$ - allow wrong tail and                      |
|             | probability tax1 before noon is $1 - 0.78814 = 0.212$                              | Α 1   | А     | sup in number of minutes to 12 noon $A1 = 0.212 (0.211 = 0.212)$ |
|             | 1 - 0.70014 - 0.212                                                                | AI    | 4     | A1 $0.212 (0.211 \sim 0.213)$                                    |

| SS04 (cont) |                                                         |       |       |                                            |
|-------------|---------------------------------------------------------|-------|-------|--------------------------------------------|
| Q           | Solution                                                | Marks | Total | Comments                                   |
| 4(c)        | Time for two appeals plus break is                      | M1    |       | M1 method for mean                         |
|             | $T_1 + B + T_2$                                         | M1    |       | M1 method for s.d. or variance             |
|             | normally distributed with                               |       |       | Allow for adding variances of              |
|             | mean = 110 + 12 + 110 = 232                             |       |       | independent variables even if model        |
|             | $12^{-1}$                                               | . 1   |       | incorrect                                  |
|             | Variance $25^2 + 4^2 + 25^2 = 1266$                     | AI    |       | A1 232 and 35.58 or 1266                   |
|             | standard deviation = $35.58$                            | m 1   |       | m1 correct method allow wrong toil and     |
|             | $z = (180 - 232) / \sqrt{1266} = -1.461$                | 1111  |       | slin in number of minutes to 12 noon       |
|             | Probability second appeal not completed                 | Δ1    | 5     | $\Delta 1.0.928 (0.9275 \sim 0.9285)$      |
|             | by noon is 0.928                                        | 711   | 5     | M 0.928 (0.9275 * 0.9265)                  |
| (d)(i)      | $B + T_2 - T_1$ has mean 12 and standard                | M1    |       | M1 method for mean and s.d./variance       |
|             | deviation 35.58.                                        |       |       |                                            |
|             | $z = \frac{12}{\sqrt{1266}} = 0.3373$                   | ml    | 2     | ml method - allow wrong tail               |
|             | P(<0) = 1 - 0.632 = 0.368                               | AI    | 3     | A1 0.368 ( 0.366 ~0.371)                   |
| (;;)        |                                                         |       |       |                                            |
| (11)        | Taxi is due $T_1$ minutes after first appeal is         | F1    |       | F1 reasonable attempt                      |
|             | completed. Second appeal is completed <i>B</i>          | 121   |       |                                            |
|             | + $T_2$ minutes after first appeal is                   |       |       |                                            |
|             | completed.                                              |       |       |                                            |
|             | $\therefore$ Second appeal completed before taxi        | E1    | 2     | E1 complete explanation                    |
|             | due II $D + I_2 < I_1$ i.e. $D + I_2 - I_1 < 0$         | Total | 17    |                                            |
| 5(a)(i)     | - 124.51 1.0101                                         | R1    | 17    | B1 134 51 (134 5 $\sim$ 134 52) and 1 0181 |
| 5(a)(1)     | x = 134.51 $s = 1.018105% confidence interval for mean$ | DI    |       | $(1 018 \sim 1.02)$                        |
|             | 33% confidence interval for mean                        | M1    |       | M1 use of their s $d/\sqrt{10}$            |
|             | $134.51 \pm 2.262 \times 1.0181/\sqrt{10}$              | m1    |       | m1 correct method for t                    |
|             |                                                         | B1    |       | B1 Qdf                                     |
|             | 124 51 + 0 729                                          | B1√   |       | $B1\sqrt{2}$ 262 their df                  |
|             | $134.31 \pm 0.728$<br>122 78 125 24                     |       |       | A1 133.78 and 135.24 from correct          |
|             | 155.76 ~ 155.24                                         | Al    | 6     | working AG                                 |
| (ii)        | As all lengths start with 13, 3sf is in                 | E1    | 1     | E1 reason                                  |
|             | effect 1sf which is too few.                            |       |       |                                            |
|             | or                                                      |       |       |                                            |
|             | Width of confidence interval is 1.456 - if              |       |       |                                            |
|             | the limits had been rounded to 3sf the                  |       |       |                                            |
|             | width would have apparently been                        |       |       |                                            |
| a>          | 1 - a large % error.                                    | D1    |       | D1 C                                       |
| (0)         | Statement I C; Interval is based on the                 | BI    |       | віс                                        |
|             | 95% of individual lengths should lie in                 | F1    |       | F1 explanation - allow both marks for a    |
|             | the interval There is a very small                      | LI    |       | good explanation even if ontion D          |
|             | possibility that it could occur by chance               |       |       | chosen.                                    |
|             | <b>Statement 2</b> C; this would be true for an         |       |       |                                            |
|             | interval based on a known population                    | B1    |       | B1 C                                       |
|             | mean and s.d. using z. It is extremely                  | E1    |       | E1 explanation-allow both marks for a      |
|             | unlikely to be true of an interval based on             |       |       | good explanation even if option D          |
|             | estimates and <i>t</i> .                                |       |       | chosen.                                    |
|             | Statement 3 D; the interval is centred on               | B1    | -     | B1 D                                       |
|             | x and so is certain to contain x.                       | El    | 6     | E1 explanation                             |
|             | Total                                                   |       | 13    |                                            |
|             | TOTAL                                                   |       | 75    |                                            |