General Certificate of Education (A-level) June 2012

Statistics

SS03

(Specification 6380)

Statistics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^0]Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	H_{0} Population median purchases $=5$ H_{1} Population median purchases >5 1 tail test 10% level signs $-+++++++-+-+$ test stat $=3-/ 9+$ Bin (12, 0.5) model $\mathrm{P}(\leq 3-)=0.0730<0.10$ Reject H_{0} Significant evidence to suggest median number of packets has increased Wilcoxon signed-rank test	B1 M1 A1 M1 M1 A1 B1	6 1	Pop can be implied if fully worded in context oe $\eta \operatorname{not} \mu$ for signs can be reversed or incorrect (WSR diff OK) for test stat 3 or 9 for use of Bin model any B $(12,0.5)$ prob for comparison ts and 10% cr $\{0,1,2,3\}$ or $\{9,10,11,12\}$ must see 0.0729/0.194 M1m1 Just Wilcoxon
	Total		7	
2 (a)	$\begin{aligned} & \text { ranks } \\ & x 1,3,5,6,9,10,4,2,7,8, \\ & 10,8,6,5,2,1,7,9,4,3 \\ & y 1,3,5,7,9,10,4,2,6,8 \\ & 10,8,6,4,2,1,7,9,5,3 \\ & r_{\mathrm{s}} \text { (from calculator) }=0.988 \text { or } 0.987 \end{aligned}$ 0.98/0.99 allow B2 if no method seen	M1 M1 A1 B3	6	for any ranks 2 separate sets of ranks All correct alternatively differences, $d: 0,0,0,1,0,0,0,0,1,0$ $\sum d^{2}=2$ M1 diffs $r_{\mathrm{s}}=1-\frac{6 \times 2}{10 \times 99}=0.988$ or $0.987 \quad$ M1, A1
(b)	H_{0} no association H_{1} positive association 1 tail 1% test stat $r_{\mathrm{s}}=0.988$ critical value $=0.7333$ tests stat >0.7333 so significant evidence exists to reject H_{0} and conclude that a positive association exists. This suggests that hurricanes in which there are higher numbers of injuries also result in a greater cost in property damage (or positive assoc in context)	B1 B1 M1 E1	4	Allow $p / \rho=0$ or words Must be 1 tail for cV comparison ts/cv; ft r_{s} in (a) 0.7667,0.7818/0.6485/0.700 B0 M1 E0 explanation in context
(c)(i) (ii)	see scatter diagram There is evidence of a non linear relationship(or it is a curve)	M1 A1 B1	2 1	8+ points effort plot OK (allow 1 small slip) Must mention no (straight) line fit
	Total		13	

Q	Solution	Marks	Total	Comments
5(a)	$\begin{array}{lc} \hline \text { Test } \mathrm{A} \text { mean }=58.6 & \text { st dev }=19.2 \text { or } \\ & 20.3 \\ \text { Test B mean }=63.9 & \text { st dev }=\begin{array}{c} 16.0 \text { or } \\ 17.0 \end{array} \end{array}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \mathrm{~B} 1 \end{gathered}$	3	B1for both means B1,B1 for st dev must be consistent, awrt
(b)	PMCC $r=0.8940 \mathrm{r} 0.893(3 \mathrm{sf})$ (from calculator) 0.89 allow M1 M1 A0 (or B2) 0.9 allow B 1 no method no ranks	B3	3	$\begin{aligned} & \text { or } r=\frac{36140-\frac{527 \times 575}{9}}{57.552 \times 48.030}=0.894(3 \mathrm{sf}) \\ & \text { M1 }(36140) \text { M1 (formula),A1 } \end{aligned}$
(c)(i)	H_{o} Population median/mean/average score difference $=0$ H_{1} Population median/mean/average score difference $\neq 0$ 2 tail test 5% level	B1		or symbols $\mu \eta$ equal or not oe
		M1 m1 m1		for differences all m dep diffs for ranks- rank 1= smallest disallow -17 rank 1 M0 for totals of any ranks
	test stat $T=9$ critical value $=6$ test stat >6	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \\ & \text { m1 } \end{aligned}$		correct test stat for cv (11,8,3 B0 M1 E0) for comparison lower ts/cvft; must be seen unless all correct
	There is no significant evidence of a difference in mean scores for the two tests	E1	8	in context
(ii)	The differences are symmetrically distributed.	E1	1	Must have differences
(d)	PMCC indicates results of tests show strong positive association - $\underline{\text { consistent }}$ results	E1		For PMCC result and consistency/similarity
	No sig difference in means so general similarity	E1		For no sig diff means and similarity (award for similarity once only)
	test may be more effective at discriminating between good/bad applicants	E1	3	for mentioning st dev and discrimination
(e)	If separate groups took the 2 tests so there may be differences between the level of difficulty of the tests which would affect the results.	B1		concept of pairing removing effect of differences in tests disallow 'fair' allow eliminates/reduces exp error more likely to detect a difference if one exists
	Half the number of people needed	B1	2	
	Total		20	

Q	Solution	Marks	Total	Comments
6	H_{0} Samples are taken from identical populations H_{1} Samples are not taken from identical populations 2 tails 5\% Separated times with Ranks $\begin{aligned} & U_{\mathrm{M}}=66-\frac{7 \times 8}{2}=38 \\ & U_{\mathrm{A}}=39-\frac{7 \times 8}{2}=11 \end{aligned}$ $U=11$ $\mathrm{cv}=9 \text { for } n=7, m=7 \quad 2 \text { tail } \quad 5 \%$ $U>9$ Accept H_{0} No significant evidence of any difference between average journey times when travelling for the morning shift or for the afternoon shifts	B1 M1 M1 A1 m1 m1 A1 B1 M1 A1 E1	11	$\mathrm{H}_{0} \eta_{\mathrm{M}}=\eta_{\mathrm{A}}$ or words ref $\mathrm{H}_{1} \eta_{\mathrm{M}} \neq \eta_{\mathrm{A}}$ context Disallow mean Separated times effort (can be implied) Ranks as one group (either way) Ranks correct (5,6 or 9,10 OK) Ranks totalled (any ranks) m dep ranks Attempt to find U dep ranks, totals Either U correct cv correct cv $=9$ only correct comparison, ft on wrong ts - must see 11 /lower U oe upper tail unless all correct only if cv $=9$ and $U=11$ In context. Can ft conclusion
	Total		11	
	TOTAL		75	

[^0]: Further copies of this Mark Scheme are available from: aqa.org.uk

