

General Certificate of Education (A-level) June 2011

Statistics

(Specification 6380)
Statistics 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
2(a)(i)	$\mathrm{H}_{0} \quad \mu, \eta=10.8$			
	$\begin{aligned} & \mathrm{H}_{1} \mu, \eta>10.8 \\ & 1 \text { tail } 5 \% \end{aligned}$	B1		Or equivalent in words, eg 'average time spent on study' or 'population average'
	$\begin{array}{\|cccccc\|} \hline \text { diffs } & 6.65 & 3.85 & 1.5 & 0.8 & -3.7 \\ \text { rank } & 10 & 6 & 2 & 1 & 5 \end{array}$	M1		For differences from 10.8
	$\begin{array}{cccccc} \text { diffs } & 4.35 & 5.4 & -3.2 & -4.05 & -2.2 \\ \text { rank } & 8 & 9 & 4 & 7 & 3 \end{array}$	m1		Ranks as one group dep on differences (allow either way) SC1 for sign test
	$\begin{aligned} & T_{+}=10+6+2+1+8+9=36 \\ & T_{-}=5+4+7+3=19 \\ & \text { Test stat } T=19 \end{aligned}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$		Total of any ranks dep on diffs One correct
	$n=10$			
	$\mathrm{cv}=11$	B1		For cv
	$T>11$	m1		Comparison lower (plausible) T (not -ve) and cv. Can ft or $44 / 36$
	Accept H_{0}	A1		
	There is no significant evidence to suggest that average time spent per week of term has increased from 10.8 hours.	E1	9	In context
(a)(ii)	Conclusions cannot be generalised to whole population. Students at the college concerned may not represent a random sample of all such students in the country. Study patterns may vary at different times of the year.	E1	1	For any one point clearly explained (not ‘may have lied’, 'not correctly recorded’)
(b)(i)	Wilcoxon signed-rank takes takes into account the magnitude of the ranks of the differences whereas the sign test only considers the sign of those differences. or Wilcoxon signed-rank is more likely to detect a difference if one exists. or More powerful.	E1	1	Or 'magnitude of differences' (not 'takes data/size of data into account')
(ii)	If a direction/preference only was given then there would be no numerical data available to find the differences in the data that need to be used for the Wilcoxon signed-rank test. An example would be if students only had to state whether they were studying more hours, less hours or the same hours this year as last year. or If data to be analysed was very asymmetrical. An example could be that the times for study were found to be skew.	B1 E1	2	For one valid situation a direction/preference or asymmetrical explained clearly in context
	Total		13	

Q	Solution	Marks	Total	Comments
4(a)	$r=0.895$	B3	3	SC2 0.89/0.90/0.894 SC1 0.9 Allow M1 summations M1 correct use of $S_{x x} S_{x y} S_{y y}$
(b)	$\begin{aligned} & \mathrm{H}_{0} \rho=0 \\ & \mathrm{H}_{1} \rho>0 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		OE in words H_{0} pop $\mathrm{PMCC}=0$ or H_{0} no association between BMR and BMI H_{1} correct direction B1
	$\begin{aligned} & \text { ts } r=0.895 \\ & n=10 \quad \text { cv }=0.5494 \\ & r>0.5494 \quad \text { reject } \mathrm{H}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \end{aligned}$		CAO for cv ft provided $-1<r<+1$
	Significant evidence that there is a positive correlation between BMR and BMI. Men with a higher BMR tend to have a higher BMI.	A1	5	For Reject $\mathrm{H}_{0} \quad \mathrm{ts} / \mathrm{cv}$ correct
(c)	Ranks for BMR $\begin{array}{rrrrrrrrrr} 10 & 9 & 8 & 7 & 6 & 5 & 4 & 21 / 2 & 21 / 2 & 1 \\ \text { or } 1 & 2 & 3 & 4 & 5 & 6 & 7 & 81 / 2 & 81 / 2 & 10 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$		Ranks (can be reversed) Ties For $d \quad 21203031 / 21 / 23$ $\sum d^{2}=4+1+\ldots+9=361 / 2$
	SRCC $r_{s}=0.778(11909)$ ignore sign NMS SC4 $r=0.78$ SC2 $r=0.8$ SC0 $r=0.5636$ SC3 $r=0.770 / 0.769$ with ranks SC2 $r=0.770 / 0.769$ no ranks	B2	5	$\begin{aligned} & \text { SRCC }=1-\frac{6 \times 361 / 2}{10 \times 99}=0.779 \\ & \text { Reversed ranks } \sum d^{2}=292.5 r=-0.773 \\ & \text { M1A1 must be } 0.779 /-0.773 \end{aligned}$
(d)	There is a significant positive correlation between BMR and BMI and there is strong positive rank correlation between BMR and level of daily physical activity.	$\begin{gathered} \text { E1 } \\ (\mathrm{noft}) \end{gathered}$		Both results put together
	Men who have a high BMI tend to have a high BMR as do men who have a high level of daily physical activity.	E1	2	Interpretation in context (not just repeat of conclusion)
(e)(i)	BMR and BMI measurements are normally (or bivariate normal) distributed	B1	1	Mention of normal distribution or linear relationship seen
(ii)	Ranks only available for level of daily physical activity so SRCC is the only correlation coefficient that can be evaluate or No actual values given for DPA	E1	1	Clearly in context
	Total		17	

