

General Certificate of Education (A-level) January 2013

Statistics

SS03
(Specification 6380)
Statistics 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
2(a)	Sibling pairs were used in order to eliminate any individual differences between students so that any difference due to birthdate is more	E1		'Student effect' eliminated More likely to detect any difference
(b)	Ho $\quad \eta_{d}=0$ H1 $\eta_{d}>0$ 1 tail test 10% level	B1		For both
	Signs $++++++\ldots+$ test stat 7+ / 2 - B ($9,0.5$) model $\mathrm{P}(\geq 7+)=\mathrm{P}(\leq 2-)=0.090(0.0898)$ $0.090<0.10$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { M1 } \end{gathered}$		For signs Correct ts Use of B $(9,0.5)$ Correct comparison
	Significant evidence to reject Ho. There is significant evidence to suggest that, on average in Year 7, students with autumn birthdays gain higher CAT scores than those with summer birthdays .	E1	6	Correct conclusion in context
	Total		8	

Q	Solution	Marks	Total	Comments
3	Test stat $T=41 / 2$ $\begin{aligned} & n=8 \\ & \mathrm{cv}=6 \\ & T<6 \end{aligned}$ Reject H_{o} There is significant evidence to suggest that average taste score for a seafood dish is higher when sounds of the seaside are played.	B1 M1 m 1 m1 A1 B1 m1 E1	8	Or equivalent in words For differences Ranks Total of ranks One correct For cv Correct comparison ts/cv with $\mathrm{cv}=6,8,4$ In context
	Total		8	

Q	Solution				Marks	Total	Comments
5(a)	H_{o} Samples are taken from identical populations H_{1} Samples are not taken from identical populations - population average level of impurity differs 2 tail 5\% Ranks $\begin{array}{lllllllllll}\text { A } & 1 & 2 & 3 & 6 & 8 & 9 & 10 & 11 & 12 & 141 / 2\end{array}$ $\begin{array}{lllllllllll}\text { B } 4 & 5 & 7 & 13 & 141 / 2 & 16 & 17 & 18 & 19 & 20\end{array}$				B1		For both or equivalent hypotheses referring to population medians.
					$\begin{aligned} & \text { M1 } \\ & \text { m1 } \end{aligned}$		Attempt at ranks as 1 group 10 correct as one group/ties
	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=1+2+\ldots .+141 / 2=761 / 2 \\ & \mathrm{~T}_{\mathrm{B}}=4+5+\ldots \ldots+20=1331 / 2 \\ & \mathrm{U}_{\mathrm{A}}=76.5-\frac{10 \times 11}{2}=21.5 \\ & \mathrm{U}_{\mathrm{B}}=133.5-\frac{10 \times 11}{2}=78.5 \end{aligned}$ Test stat $\mathrm{U}=21.5$ $\begin{aligned} & \mathrm{cv}=24 \\ & \mathrm{U}<24 \end{aligned}$ Reject H_{o} Significant evidence at the 5% level to suggest that there is a difference in the average level of impurity for processes A and B.				m1		totals
					m1 A1		U calculated either correct
					B1		cv correct
					A1		correct choice of ts U for comparison
					A1 E1	10	In context
(b)(i)		A	B	total			
	Fault	10	6	16			
	No fault	36	48	84	M1	2	Either A or B freq correct
	total	46	54	100	A1	2	All correct
(ii)	H_{0} Number of faults is independent of process H_{1} Number of faults is not independent of process. 1 tail 10\%				B1		For both
		A	B	total			
	Fault	7.36	8.64	16	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		For expected freq method
	No fault	38.64	45.36	84			All correct to 1 dp (not integers)
	$\begin{aligned} \mathrm{ts} & =\sum \frac{(\|O-E\|-0.5)^{2}}{E} \quad\|\mathrm{O}-\mathrm{E}\|=2.64 \\ & =\frac{2.14^{2}}{7.36}+\frac{2.14^{2}}{8.64}+\frac{2.14^{2}}{38.64}+\frac{2.14^{2}}{45.36} \\ & =1.37 \end{aligned}$				M1		Ts effort denominator
					m1		Yate's effort
					m1		Correct 2.14 seen
					A1		AWFW (1.30, 1.42)
	$\begin{aligned} & \mathrm{df}=1 \quad 10 \% \quad \mathrm{cv}=2.706 \quad \mathrm{ts}<2.706 \\ & \text { Accept } \mathrm{H}_{\mathrm{o}} \end{aligned}$				$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$		cv correct
(c)	Jess should choose process B since the test in part (a) indicates that process B results in a lower level of impurity and the test in part (b) indicates no significant evidence of a difference in fault levels between A and B				$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	9 2	Choice B with reasons ref parts (a) and (b)
				Total		23	

