

General Certificate of Education

Statistics 6380

SS03 Statistics 3

Mark Scheme

2010 examination – January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director Genera

Key to mark scheme and abbreviations used in marking

М	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
А	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is	for method and	accuracy					
Е	mark is for explanation							
or ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only MR mis-read							
CSO	correct solution only RA required accuracy							
AWFW	anything which falls within FW further work							
AWRT	anything which rounds to ISW ignore subsequent work							
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
-x EE	deduct x marks for each error G graph							
NMS	no method shown c candidate							
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS03				
Q	Solution	Marks	Total	Comments
1(a)	H ₀ pop median/ η = 11250 H ₁ pop median/ η \neq 11250	B1		Or words referring to average price
	2 tail 10%			
	signs -+ ++ ++ .+	M1		signs
	n = 9			
	test stat = $6^+/3^-$	A1		test stat correct
	Model B(9, 0.5)	M1		Bin model seen to be used Or cr $\{0,1\}$ $\{8,9\}$ with probs
	$P(\leq 3^{-}) = P(\geq 6^{+}) = 0.254 > 0.05$	M1		Comparison of correct B(9, 0.5) prob with 0.05
	Accept H ₀			or use of identified cv with probability (or 0.508/0.10)
	There is no significant evidence to doubt that the median asking price is $\pounds 11250$.	A1	6	
(b)	A Type II error occurs when an incorrect null hypothesis is accepted. In this case, it would mean that we	B1		Type II correctly identified.
	concluded that the population median asking price was $\pounds 11250$ but, in fact, the median asking price was not equal to $\pounds 11250$.	E1	2	Context
	Total		8	

SS03(cont)				
Q	Solution	Marks	Total	Comments
2(a)(i)	From calculator $r = 0.891$			Alternative $n = 7$
	$29495 - \frac{2885 \times 69}{29495}$			$\sum y = 69 \sum x = 2885$
	or $r = \frac{25155}{\sqrt{14242.86}} = \frac{7}{\sqrt{98.86}}$			$\sum_{y^2 = 779}^{2} = 779$
	1057 14			
	$=\frac{1037.14}{119.34 \times 9.94}$			$\sum x^2 = 1203275$
	= 0.891			$\sum xy = 29495$ M1
		M1		
		m1		m1 formula in (i) or (ii) 0.885 to 0.905 A1 (3cf)
		AI		0.885 to 0.905 A1 (581)
(::)	From calculator $r = 0.658$			Alternative $n = 7$
(11)	$34021 - \frac{2885 \times 81.8}{7}$			
	or $r = \frac{7}{\sqrt{14242.86} \times \sqrt{15.35}}$			$\sum z = 81.8$ $\sum z^2 = 971.24$
	$=\frac{307.71}{100000000000000000000000000000000000$			$\sum xz = 34021$ M1
	$ \begin{array}{r} 119.34 \times 3.92 \\ = 0.658 \end{array} $	M1A1	5	2 0 650 to 0 665 A1
			C	
(b)	$r_{xy} = 0.891$ $r_{xz} = 0.658$			
	$H_0 \rho = 0$			
	H ₁ $\rho > 0$ 1 tail 5 % sig level	B1		For hypotheses stated correctly once
	Need only be stated once			
	test stat $r_{xy} = 0.891$			
	cv = 0.6694 $n = 7$			For cv and comparison
	since $t > 0.6694$			
	Reject H ₀	MI		For Reject H_0 ; ft
	test stat $r_{xz} = 0.658$	A1√		
	cv = 0.6694 $n = 7$			
	since $t < 0.6694$			
	Accept H ₀	A1	4	For Accept H ₀
(c)	There is significant evidence to suggest a			
	positive correlation between the calories			
	and the fat content of milkshakes: the	E1		
	calories.			
	There is no significant evidence to suggest		-	
	a positive correlation between the calories and the volume of the milkshakes.	E1	2	Need to refer to part (b)
	Total		11	

	Sal-4:		Manka	Total	Commonta
<u> </u>	$\frac{500 150 100 80 - 170}{500 150 100 80 - 170}$) for West		Total	Comments Seen or used
5(a)	500 - 130 - 100 - 80 - 170 500 - 105 = 395 rejected	J IOI West	M1		Seen of used
	Soloot Do:	aat Tatal	IVII		
	N 24 12	$\frac{101}{4}$			
	N 24 12 F 12 89	0 150 8 100			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		A1		For one unknown 'select' correct
	S 12 00 W 57 11	3 170	A1	4	All correct
	Total 105 39	5 500			
	100 07	0 000			
(b)	H ₀ Selection independent region	of home			
	H ₁ Selection not independe	ent of	B1		
	Home region	. 1 10/			
	1	ta11 1%			
	Expected frequencies				
	T medanara				
	Soloat	Doioat			
	N 31.5	118.5	M1		E method for 3 correct; ft
	S 21	79	. 1 . ^		
	E 16.8	63.2	Al√		For all E correct
	W 35.7	134.3			
	$t_0 = \sum (O - E)^2$		m1		dep sensible effort for E
	$LS = \sum \frac{1}{E}$				Correct denominator ft
	$=\frac{7.5^2}{7.5^2}+\frac{7.5^2}{7.$	21.3 ²	m1		Correct effort at ts ft
	31.5 118.5	134.3			
	24.07				24.0 to 26.0
	= 24.97		Al		(or p = 0.0000157)
	df = 3 1% $cv = 11.345$		B1		3 df
	ts > 11.345		B1		for cv and comparison
	Reject H ₀		A1	9	
(c)	There is significant evidence that selection is not indeper region.	ce to suggest ndent of home	E1		General conclusion in context (could be in part (b))
	Artists from the south seen be selected (expected high observed) and those from t much more likely to be se (expected lower than obser	n less likely to er than he west seem lected ved).	E1	2	More detailed identification
		Total		15	

6

Q	Solution			Marks	Total	Comments
4(a)(i)	Ranks					
		Unleaded	Diesel	M1		attempt at ranks
	Cyprus	1	1			(can be reversed)
	Romania	2	2	M1		for 12 correct
	Sweden	3	6.5	1111		
	Slovakia	4	6.5	A1		all correct
	Austria Malta	5	5 4			
	Finland	7	3			
	France	8	8			alternative
	Germany	9	9			a = 0, 0, 5.5, 2.5, 0, 2, 4, 0, 0, 0 $\sum d^2 = 28.5$ P1
	UK	10	10			$\sum a = 38.5$ BI
	$r_{\rm s} = 0.766(3 \text{ s})$	f from calc)		В3	6	$r_{\rm s} = 1 - \frac{6 \times 38.5}{10 \times 99} = 0.767$ M1, A1ft small slip
(11)	H ₀ Rank order duty and diese independent.	rs of unleaded el excise duty a	petrol excise are	B1		or alternatives indicating H_0 No association H_1 Association
	H ₁ Rank order duty and diese independent – 2 tail 5%	rs of unleaded el excise duty a there is an ass	petrol excise are not sociation			
	$cv = \pm 0.6485$	$n = 10 2 ext{ tai}$	1 5%	B1		For cv
	test stat $r_s = 0$).766				
	$ r_{\rm s} > 0$	0.6485		M1		For comparison ts/cv; ft
	Reject H ₀ Sig level to sugges unleaded petro excise duty fo	nificant evider st an association of excise duty r countries in 1	nce at 5% on between and diesel Europe.	E1	4	For correct conclusion in context [Allow 1 tail H ₁ and consistent cv]

SS03(cont)				
Q	Solution	Marks	Total	Comments
4(b)	H_0 pop median/mean diff $\eta_d = 0$	B1		
	H ₁ pop median/mean diff $\eta_d > 0$			
	1 tail 1% (d is unleaded – diesel)	B1		Consistent with differences
	diff 4 5 - 1 8 12 22 14 15 0 rank 3 4 2 1 5 6 9 7 8 exclude	M1 M1		For differences UL – Diesel or Diesel – UL For ranks
	$T_+ = 3 + \ldots + 8 = 43$	m1		For total of ranks
	$T_{-}=2$	A1		For one correct total or $ts = 2$ if method
	Test stat $T = 2$			seen
	$n=9$ cr ≤ 3	B1		For cv
	T < 3	M1		Comparison correct cv/ts
	Significant evidence at 1% level to reject			
	H ₀ and conclude that average excise duty			
	for diesel is less than that for unleaded			
	petrol in European countries	E1	9	In context
	Total		19	

Q	Solution			Marks	Total	Comments
5(a)						
	С	D	E			
	14.4	14.1	13.9			
	14.5	14.3	14.2	M1		Effort to put into 3 categories
	14.7	14.4	14.6	1411		Enore to put into 5 categories
	15.2	14.8	14.9	A1		6 correctly placed
	15.4	15.0	15.1			(can be implied by totals later)
	Ranks					
	С	D	Ε			
	51/2	2	1			
	7	4	3			
	9	51/2	8			
	14	10	11	M1		Ranks as one group
	15	12	13	Al		At least 10 correct
	$T_{\rm C} = 50 \frac{1}{2}$	$T_{\rm D} = 33 \frac{1}{2}$	$T_{\rm E} = 36$	m1		
	$n_{\rm C} = 5$	$n_{\rm D} = 5$	$n_{\rm E} = 5$	B1		Totals of ranks
	H _o Samples ar populations H ₁ Samples ar populations – average fuel u	e taken from id e not taken fro at least two po sages differ 10	dentical om identical opulation 0% 1 tail	B1		or $H_0 \eta_C = \eta_D = \eta_E$ $H_1 \text{at least two of} \eta_C, \eta_D, \eta_E \text{ do differ}$
	$\sum_{i=1}^{m} \frac{T_i^2}{n_i} = \frac{50.5}{5}$	$\frac{3^2}{5} + \frac{33.5^2}{5} + \frac{36}{5}$	$\frac{9^2}{2} = 993.7$	ml		for $\sum_{i=1}^{m} \frac{T_i^2}{n_i}$
	$H = \frac{12}{15 \times 16} \times 9$	993.7 – (3 × 10	6) = 1.685	A1		test stat correct 1.6 to 1.8
	Critical value	from $\chi_2^2 = 4$.	605	B1		
	<i>H</i> < 4.605					
	No sig eviden that samples a populations P	ce to reject H_0 re from identic opulation aver	Conclude cal cage fuel	M1		
	usages betwee	en models do n	ot differ	A1	12	

SS03(cont)

SS03(cont)				
Q	Solution	Marks	Total	Comments
5(b)	H ₀ Samples are taken from identical populations H ₁ Samples are not taken from identical populations – pop average miles per gallon greater for compact cars. 1 tail 5%	B1		Hypotheses referring to population averages also acceptable
	Compact ranks Midsize rank 6 3 13 4 9 10 12 1 14 2	M1 m1		Attempt at M–Whitney – ranks as one group for 12 correct
	8 5 7 11			for total attempt (any ranks)
	$T_{\rm C} = 6 + \dots + 8 = 62$ $T_{\rm M} = 3 + \dots + 11 = 43$	m1		for U
	$U_{\rm C} = 62 - \frac{6 \times 7}{2} = 41 \ U_{\rm M} = 43 - \frac{8 \times 9}{2} = 7$	A1		one U correct
	Test stat $U = 7$ $n = 6$, $m = 8$ cr ≤ 11 U = 7 < 11			for cv correct comparison cv/U
	Reject H_0 Significant evidence at the 5% level to suggest that the average city miles per gallon is greater for compact cars.	A1 E1√	10	reject H ₀ Conclusion in context
	Total		22	
	TOTAL		75	