

General Certificate of Education

Statistics 6380

SS02 Statistics 2

Mark Scheme

2008 examination - January series

www.theallpapers.com

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

www.theallpapers.com

Key to mark scheme and abbreviations used in marking

М	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
А	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
$\sqrt{10}$ or ft or F	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
-x EE	deduct <i>x</i> marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

January 08

SS02				
Q	Solution	Marks	Total	Comments
1(a)	Box and whisker plot	M1 B1 A1	3	method - median, box and whiskers shown - not necessarily correct labelled 2007 accurate plot
(b)(i)	Average mins late lower in 2007 variability lower in 2007 symmetrical 2006, positive skew 2007 sometimes on time or early 2007, never on time 2006.	E1 E1 E1	3	 average less/ more punctual in 2007 variability less in 2007 skew in 2007 sometimes on time /early in 2007 <i>maximum 3</i>
(ii)	Punctuality improves through the month	E2,1	2	award both marks for clear answer
			8	
2(a)	Week 1 2 Day W F M W F M.A. 11.0 12.7 13.7 14.3 13.7 Week 3 4 4 4 4 4 Day M W F M W M.A. 14.3 15.7 16.0 16.7 17.3	B1 M1 A1	3	attempt at 3-point M.A. method for M.A. (any) all correct ± 0.1 - allow one small slip
(b)	(see diagram on page 5)	M1 A1 B1	3	plotted in correct position (their M.A.) accurate plot by eye - allow one small slip reasonable trend line - generous
(c)	Estimate of Monday effect $\frac{7-10.5 + 12 - 12.4 + 10 - 13.9 + 11 - 16.2}{4}$ $= -3.25$ Forecast = 18.7 - 3.25 = 15	M1 A1 M1		method for Monday effect - allow comparison with trend line or with M.A.; allow omission of 1st Monday $-3.25(-3 \sim -4)$ sign may be implied method for forecast - their values
		A1 B1	5	15 (14 ~ 16) answer given as whole number
(d)	Current trend suggests mean attendance will be above 19 in week 6 so classes likely to continue. There is no guarantee that trend will continue.	E1√ E1	2	classes likely to continue - consistent with their trend line trend above 19 in week 6 - or other comment.
	Total		13	

SS02 (cont)

Q	Solution	Marks	Total	Comments
3 (a)	(i) P(6 or fewer) = 0.256	B1		0.256 (0.256 ~ 0.257)
	(ii) $P(>9) = 1 - P(9 \text{ or fewer})$	M1		reasonable attempt at $P(>9)$
				allow $1 - P(8 \text{ or fewer})$ etc
	= 1 - 0.6530	m1		correct method
	= 0.347	A1	4	0.347 (0.3465 ~ 0.3475)
(b)	(i) $P(2) = 0.9856 - 0.9098$	M1		method
(~)	= 0.0758	Al		$0.0758(0.0755 \sim 0.076)$
	(ii) Poisson mean $8.5 \pm 0.5 = 9$	B1		use of $Po(9)$ or attempt at
	P(0) = 0.0001			$P(0 \text{ get on}) \times P(0 \text{ get off})$
	1 (0) = 0.0001	B1	4	$0.0001(0.0001 \sim 0.00013)$
		DI	-	0.0001 (0.0001 0.00013)
(c)	Probability bus will not need to stop at	F1√		very unlikely will not need to stop at
(0)	any particular stop is very small Even			any particular stop
	if there are a large number of stops it is			any particular stop
	very likely she will need to stop at all	F1	2	very likely will need to stop at all
	of them	21	2	stops
			10	
4	$H_0: \mu = 1000 H_1: \mu \neq 1000$	B1		one correct hypothesis - generous
	· · · · · · · · · · · · · · · · · · ·	B1		both hypotheses correct
	x = 970.11			
				24
	970.11-1000	M1		use of $\frac{24}{\sqrt{2}}$
	z =			$\sqrt{9}$
	$\frac{-\cdot}{\sqrt{0}}$	m1		correct method for z - ignore sign
	-374	Δ1		374(373-374)
	= -5.74	R1		$-5.74(-5.75 \approx -5.74)$
	(n = 0.00018 compare with 0.05 or)	DI		1.90 ignore sign
	(p = 0.00010 compare with 0.05 or	A 1. A		must compare negative z with negative
	compare 0.00007 with 0.025 /	1111		c v
	Reject H_0 Significant evidence that	A1√	8	correct conclusion in context
	mean weight of loaves is not equal to	1 1 I V	0	contect conclusion in context
	(less than) 1000 grams			
	(1000 thai) 1000 gruins			
	Π-4-1	1	0	

SS02 (cont)				
Q	Solution	Marks	Total	Comments
5(a)(i)	$E(X) = 0 \times 0.005 + 1 \times 0.015 + 2 \times 0.08 + 3 \times 0.15 + 4 \times 0.75 = 3.625$	M1		method $E(X)$
(ii)	E(X2) = 13.685 V(X) = 13.685 - 3.625 ² - 0.544375	M1 m1		method $E(X^2)$ method for variance
	$s.d. = \sqrt{0.544375} = 0.738$	m1 A1	5	method for s.d. 0.738 (0.737 ~ 0.739)
(b)(i)	s.d. = $\sqrt{6.5} = 2.55$	M1 A1	2	method 2.55 (2.545 ~ 2.555)
(ii)	<i>Y</i> cannot exceed number of terminals. Poisson has no upper limit.	E1	1	
(iii)	All terminals usually in use at Molcar. The mean is low because only 4	E1		- mean and s.d. low at Molcar due to lack of terminals
	terminals are available. Poisson model at Garsden suggests that there are	E1		- most terminals in use most of the time at Molcar
	usually sufficient terminals to meet demand. Suggest new terminal should be installed at Molcar.	E1	3	 Poisson at Garsden suggests no serious shortage of terminals Install at Molcar
			11	
6(a)	54 5	R1	1	54.5 CAO
U (<i>a</i>)	JT.J	DI	1	J4.J CAO
(b)	(i) Steep upward trend. After a	E1		upward
	particularly large rise in 2003 there was	E1		further comment e.g. large rise in
	a reduction in 2004			2003/non-linear
	(ii) Upward trend. Not as steep as in	E1		upward
	London. average price in S.E greater	EI		less steep than London S E > London in 1004
	London in 2004.	E1	5	S.E < London in 2004
(c)	(i) $56054/24960 = 2.25$ New 94			
	(ii) $63775/29278 = 2.18$ Other 94	M1		method - at least 1
	(iii) 217970/73495 = 2.97 New 04	A1		all ratios correct 1dp
	(iv)172801/55315= 3.12 Other 04			
	In both 1994 and 2004 ratio is similar	E1		London and SE ratios similar in
	tor new and other. However has	E 1	Λ	1994 and 2004 Botic lorger in 2004 there in 1004
	i.e. the average advance relative to	EI	4	Ratio larger in 2004 than in 1994 Other sensible points accepted for
	average earnings has increased.			both E marks some context required
			10	
	I Utal		10	

5502 (cont)	~			~
Q	Solution	Marks	Total	Comments
7	(a) ×			
	* * * *	B1		downward linear trend
	× × × × ×	B1		random variation
	(b)	R1		unward linear trend
	×	DI		upward mear trend
	× × × × × × ×	B1	4	short-term variation
	×			
	Total		4	
8(a)	Number staff 000 to 819	E1		Valid numbering
	Select 3-digit random numbers Ignore >819	E1		3-digit random numbers
	Ignore repeats	E1		ignore >819 and repeats
	Continue until 25 selected and choose corresponding staff	E1	4	continue until 25 selected
(b)(i)	Permit holder/waiting list/other	B1		permit holder status
	male/female full-time/part-time etc	B1	2	any other sensible strata
(ii)	(A) Choose a digit between 1 and 8 at random. Pick this space and every 8th	E1		idea of systematic sampling
	thereafter. e.g. 3,11,19187,195	El		correct method including "every 8th"
	(B) Easy and quick	B1		easy - or other valid advantage
	(C) Excludes anyone without a permit,	E1		any reasonable source of possible bias
	favours those who usually arrive early etc	E1	5	any different reasonable source of possible bias
	Total		11	
	TOTAL		75	
