

General Certificate of Education (A-level) June 2011

Mathematics

MS/SS1B

(Specification 6360)

Statistics 1B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

Q	Solution	Marks	Total	Comments
$\begin{array}{r} 1 \\ \text { (a)(i) } \end{array}$	Mode $=\mathbf{2 5 3}$	B1	1	CAO
(ii)	Median $=\mathbf{2 5 2}$	B1		CAO
	$\begin{aligned} \text { Upper quartile } & =\mathbf{2 5 3} \\ \text { Lower quartile } & =\mathbf{2 5 0} \end{aligned}$	B1		CAO; either May be implied by $\mathrm{IQR}=3$
	Interquartile range = $\mathbf{3}$	B1	3	CAO; do not award if seen to be not based on 253 and 250
(b)(i)	$\text { Range }=271-227=44$	B1	1	CAO; do not award if seen to be not based on 271 and 227
(ii)	Mean, $\quad \bar{x}=\mathbf{2 5 1}$ to 251.4 Award B1 if divisor seen not to be 85 but answer in range	B2		AWFW $\sum f x=21352 \quad \bar{x}=251.2$
	Note: If B0 then can award M1 for attempt at $\sum f x \div 85$ seen			Ignore notation and condone incorrect midpoints (eg upper or lower limits used)
	Standard deviation, s or $\sigma=4.21$ to 4.28 Award B1 if divisor seen not to be 84 or 85 but answer in range	B2	4	AWFW $\sigma=4.217$ $\begin{array}{r} \sum f x^{2}=5365134 \\ s=4.242 \end{array}$
(c)	Interquartile range (IQR)	B1		Named
	Not affected by unknown/large/smal1/extreme/ outlying/227 \& 271 values	Bdep 1	2	Or equivalent Dependent on previous B1 Only negative comments on other measures $\Rightarrow \mathrm{Bdep} 0$
				More than one named \Rightarrow BO Bdep0 Range \Rightarrow BO Bdep0
	Standard deviation (s or σ)	(B1)		Named
	Uses all data values	(Bdep1)		Or equivalent Dependent on previous (B1) Only negative comments on other measures $\Rightarrow \mathrm{Bdep} 0$
	Total		11	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
(b)	Any line (straight, freehand, curve) from $(0,-1)$ on Figure 1 or from $(0,5)$ on Figure 2	B1		Accept clear marking of $(0,-1)$ or $(0,5)$ with no line
(i)	Straight, not freehand, line from $(\mathbf{0},-\mathbf{1})$ to $(\mathbf{4 0}, \mathbf{5})$ on F1 only; allow line extensions and only very minor inaccuracies in points plotted	B1		$(10,0.5) \quad(20,2) \quad(30,3.5)$
(ii)	Straight, not freehand, line from $(\mathbf{0}, \mathbf{5})$ to $(\mathbf{1 0}, \mathbf{1})$ on F2 only; allow line extensions and only very minor inaccuracies in points plotted	B1	3	$(2,4.2) \quad(4,3.4) \quad(6,2.6) \quad(8,1.8)$
	Notes: Both lines on F1 \Rightarrow B1 B1 B0 max Both lines on F2 \Rightarrow B1 B0 B1 max >1 undeleted line on either F1 or F2 $\Rightarrow 2$ max			
	Total		3	

Q	Solution	Marks	Total	Comments
$\begin{array}{r} 4 \\ \text { (a) } \end{array}$	$\begin{aligned} \sqrt{\frac{184.5}{49}} \text { or } 1.92 \times \sqrt{\frac{50}{49}} & \\ & =1.94 \end{aligned}$	B1	1	Fully correct expression or equivalent must be seen Note: $s=\sqrt{184.5 / 50}=1.939 \Rightarrow B 0$ AG
$\begin{array}{r} \text { (b) } \\ \text { (i) } \end{array}$	$96 \%(0.96) \Rightarrow z=2.05$ to 2.06	B1		AWFW (2.0537)
	CI for μ is $\quad \bar{X} \pm z \times \frac{s}{\sqrt{n}}$	M1		Used with 251.1 and 1.94 correctly Must have \sqrt{n} with $n>1$
	Thus $\quad 251.1 \pm 2.0537 \times \frac{1.94}{\sqrt{50 \text { or } 49}}$	AF1		F on z only
	Hence or $\mathbf{2 5 1 . 1} \pm \mathbf{0 . 6}$ $(\mathbf{2 5 0 . 5}, \mathbf{2 5 1 . 7})$	Adep 1	4	CAO/AWRT Dependent on AF1 but not on z so can be gained using an incorrect z AWRT
(ii)	Claim is $\mu>250$			
	Clear correct comparison of 250 with LCL or CI so	BF1		F on CI $\quad(250<\mathrm{LCL}$ or CI$)$
	Claim is supported/reasonable/correct/true/etc Must be consistent with c's comparison	Bdep 1	2	Dependent on BF1
(c)	$\begin{aligned} & \bar{x}-n s=251.1-n \times 1.94<250 \\ & \text { SC: Quoted values of } 249.2,247.2 \text { or } 245.3 \\ & \quad \text { (AWRT) } \Rightarrow \text { M1 } \\ & \text { so } \end{aligned}$	M1		Allow any multiple of 1.94 Must clearly indicate the value of a numerical expression giving a result less than 250
	Some individual packets are likely to/will contain less than 250 grams	A1	2	Or equivalent
	Total		9	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
(a) \\
(i)
\end{tabular} \& \[
\frac{X \sim \mathrm{~B}(10,0.15)}{\mathrm{P}(X \leq 2)}=\mathbf{0 . 8 2 (0)}
\] \& B1 \& 1 \& AWRT (0.8202) \\
\hline \multirow[t]{2}{*}{(ii)} \& \[
\begin{aligned}
\mathrm{P}(X \geq 2)=1-\mathrm{P} \& (X \leq 1) \\
\& =\mathbf{1}-(\mathbf{0 . 5 4 4 3} \text { or } \mathbf{0 . 8 2 0 2})
\end{aligned}
\] \& M1 \& \& \begin{tabular}{l}
Requires ' 1 - \\
Accept \(3 / 2 \mathrm{dp}\) rounding or truncation Can be implied by 0.455 to 0.456 but not by 0.179 to \(0.18(0)\)
\end{tabular} \\
\hline \& \(=0.455\) to 0.456 \& A1 \& 2 \& AWFW (0.4557) \\
\hline \multirow[t]{3}{*}{(iii)} \& \[
\begin{equation*}
\mathrm{P}(1<X<5)=0.9901 \text { or } 0.9986 \tag{1}
\end{equation*}
\]
\[
\text { minus } 0.5443 \text { or } 0.1969
\] \& M1

M1 \& \& | Accept 3 dp rounding or truncation $\begin{array}{r} p_{2}-p_{1} \Rightarrow \text { M0 M0 A0 } \\ \left(1-p_{2}\right)-p_{1} \Rightarrow \text { M0 M0 A0 } \\ p_{1}-\left(1-p_{2}\right) \Rightarrow \text { M1 M0 A0 } \\ \text { only providing result }>0 \end{array}$ |
| :--- |
| Accept 3 dp rounding or truncation |

\hline \& $$
=0.445 \text { to } 0.446
$$ \& A1 \& 3 \& AWFW (0.4458)

\hline \& $B(10,0.15)$ expressions stated for at least 3 terms within $1 \leq X \leq 5$ gives probability

\[
=0.445 to 0.446

\] \& | (M1) |
| :--- |
| (A2) | \& \& | Can be implied by a correct answer AWFW |
| :--- |
| (0.4458) |

\hline (b) \& $\underline{Y} \sim \mathrm{~B}(50,0.15)$ \& \& \& Normal approximation $\Rightarrow 0$ marks

\hline (i) \& $$
\mathrm{P}(Y>5)=1-\mathrm{P}(Y \leq 5)
$$ \& \& \& Requires ' 1 -'

\hline \& $$
=1-(0.2194 \text { or } 0.1121)
$$ \& M1 \& \& Accept 3 dp rounding or truncation Can be implied by $0.78(0)$ to 0.781 but not by 0.888 to 0.89

\hline \& $=0.78(0)$ to 0.781 \& A1 \& 2 \& AWFW (0.7806)

\hline \multirow[t]{4}{*}{(ii)} \& | $\begin{equation*} \mathrm{P}(5 \leq Y \leq 10)=\mathbf{0 . 8 8 0 1} \text { or } \mathbf{0 . 7 9 1 1} \tag{1} \end{equation*}$ |
| :--- |
| minus 0.1121 or 0.2194 |
| $\left(p_{2}\right)$ | \& M1

M1 \& \& | Accept $2 / 3 \mathrm{dp}$ rounding or truncation $\begin{array}{r} p_{2}-p_{1} \Rightarrow \text { M0 M0 A0 } \\ \left(1-p_{2}\right)-p_{1} \Rightarrow \text { M0 M0 A0 } \\ p_{1}-\left(1-p_{2}\right) \\ \text { only providing result > } 0 \end{array}$ |
| :--- |
| Accept 3 dp rounding or truncation |

\hline \& $=0.768$ \& A1 \& 3 \& AWRT (0.7680)

\hline \& $B(50,0.15)$ expressions stated for at least 3 terms within $4 \leq Y \leq 10$ gives probability \& (M1) \& \& Can be implied by a correct answer

\hline \& = 0.768 \& (A2) \& \& AWRT (0.7680)

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

