

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.
Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

Q	Solution	Marks	Total	Comments
1 (a)	$\text { Mean }=\frac{\sum f x}{\sum x}=\frac{247}{52}=4.75 \text { or } 43 / 4$	B2		$\begin{gathered} \frac{247}{52} \Rightarrow \mathrm{~B} 1 \\ \mathrm{CAO}(4.75=5 \Rightarrow \mathrm{ISW}) \\ 4 \frac{39}{52} \Rightarrow \mathrm{~B} 2 \end{gathered}$
	If B 0 but evidence of $\frac{\sum f x}{52}$	(M1)		
	$\operatorname{Median}(26,261 / 2)=5$	B2		CAO
		(B1)		Stated identification of 26 or $261 / 2$
	If $B 0$ but evidence of cumulative frequencies F: (0) $1 \begin{array}{llllllll} & 3 & 12 & 25 & 32 & 45 & 51 & 52\end{array}$ or	(M1)		Need to see attempt at $\geq 4 F$-values
	$4+\frac{x}{7} \text { where } 0<x<2$ $\operatorname{Mode}(\mathrm{s})=4$ and 6	B1		$(4<\text { median }<4.29)$ CAO both (so mode $=5 \Rightarrow \mathrm{~B} 0$)
	$\operatorname{Mode}(\mathrm{s})=4$ and 6	B1	5	CAO both (so mode $=5 \Rightarrow \mathrm{~B} 0$)
(b)	Mode(s)	B1		CAO
	More than one mode/value Two modes/values	B1dep		Or equivalent; eg not unique
	No unique mode/value Notes:			Dep only on previous B1 scored
	If data treated as two separate sets, then only marks available are B1 B1dep in (b) If averages confused then mark (a) as stated eg median $=4$ and $6 \Rightarrow B 0$ in (a) and in (b) "median, as two values" $\Rightarrow \mathrm{B} 0 \mathrm{~B} 0$		2	Modes $=1$ and $13 \Rightarrow \mathrm{~B} 0$ in (a) but B1 B1dep available in (b)
		Total	7	

MS/SS1B (cont)

MS/SS1B (cont)

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
4	$\begin{gathered} \mathrm{P}(C)=0.6 \quad \mathrm{P}(C \cap B)=0.25 \\ \{\mathrm{P}(C \text { only })=0.35 \quad \mathrm{P}(B \text { only })=0.4\} \end{gathered}$			In (a), ratios (eg 4:10) are only penalised by 1 mark at first correct answer
(a) (i)	$\mathrm{P}(C)=1-\mathrm{P}(C)=1-0.6=0.4$	B1	1	CAO; or equivalent
(ii)	$\begin{aligned} & \mathrm{P}(C \cap B)=0.6-0.25 \\ &=1-(0.4+0.25) \\ &=0.35 \end{aligned}$	M1 A1	2	Can be implied by correct answer CAO; or equivalent
(iii)	$\begin{array}{rlrl} \mathrm{P}(B) & =(\mathrm{i})+p & \text { with } p & <0.6 \\ & =(\mathrm{i})+0.25 & & \\ & & =0.65 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		Can be implied by correct answer Can be implied by correct answer CAO ; or equivalent
	$\begin{aligned} & \mathbf{O R} \\ & \mathrm{P}(B)=1-(\mathrm{ii}) \end{aligned}$ $=0.65$	(M2) (A1)		Can be implied by correct answer
	$\begin{aligned} & 1=\mathrm{P}(C)+\mathrm{P}(B)-\mathrm{P}(C \cap B) \\ & \text { Thus } \quad \mathrm{P}(B)=1-(0.6-0.25) \\ & \quad=0.65 \end{aligned}$	(M1) (A1) (A1)	3	Can be implied by correct answer Can be implied by correct answer CAO; or equivalent
(b) (i)	$\begin{gather*} \mathrm{P}\left(L \mid G_{\mathrm{C}}\right)=0.9 \quad \mathrm{P}\left(L \mid G_{\mathrm{CB}}\right)=0.7 \\ \mathrm{P}\left(L \mid G_{\mathrm{B}}\right)=0.3 \\ \mathrm{P}(G \cap L) \Rightarrow(\mathrm{a})(\mathrm{ii}) \times 0.9 \tag{0.315} \end{gather*}$	M1		Follow through or correct
(i)	$\begin{align*} & 0.25 \times 0.7 \tag{0.175}\\ & {[(\mathrm{a})(\mathrm{iii})-0.25] \times 0.3} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Follow through or correct
	Note: Each pair of multiplied probabilities must be >0 to score the corresponding method mark			Ignore any multiplying factors Ignore any additional terms
	$\Rightarrow 0.315+0.175+0.12=0.61$	A1	4	CAO
(ii)	Probability $=\{1-(\mathrm{b})(\mathrm{i})\}^{5}$	M1		Allow $5 \times\{1-(\mathrm{b})(\mathrm{i})\}^{5}$
	$=0.39^{5}=0.009$	A1	2	AWRT (0.00902)
		Total	12	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
5 (a)	$\text { Mean }=\frac{1620}{30}=54$	B1	1	CAO; cannot be gained in (b)
(b)	98\% (0.98) $\Rightarrow \quad z=2.32$ to 2.33	B1		AWFW (2.3263)
	CI for μ is $\bar{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n>1$
	Thus $\quad 54 \pm 2.3263 \times \frac{8}{\sqrt{30}}$	A1F		F on \bar{x} (but not 1620) and z only Allow $\bar{x}=54$ even if B0 in (a)
	Hence $\quad 54 \pm$ (3.38 to 3.42)	A1	4	CAO \& AWFW (54 \& 3.4)
	(50.58 to $50.62,57.38$ to 57.42) Notes: Use of $n=1$ in (b) must not be deemed as answer to (c) Use of $n=1$ in (b) followed by use of $n=1$ in (c) \Rightarrow (b) B1, (c) M1 A1 max Use of $n=1$ with (b) or (c) not identified \Rightarrow (b) B1, (c) 0 max			AWFW (50.6, 57.4)
(c)	Repeat of structure in (b) but with $n=1$ and $1.96 \leq z \leq 3.03$	M1		Or equivalent
	Thus $\quad 54 \pm$ (18.56 to 18.64)			CAO \& AWFW (54 \& 18.6)
	or	A1F		If z-value incorrect, then must use $54 \pm 8 \times[z$ from $(\mathrm{b})]$
	(35.36 to $35.44,72.56$ to 72.64)		2	AWFW $(35.4,72.6)$
	Note: Accept sensible non-symmetric intervals such as: $\begin{aligned} (0,54+2.0537 & \times 8) \\ & =(0,70.4 \text { to } 70.5) \end{aligned}$			
(d)	Nowhere or No	B1	1	CAO; or equivalent (ignore any reasoning)
		Total	8	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
6(a)	Figure 1: $\mathbf{3}$ correct labelled points $\mathbf{2}$ correct labelled points 	$\begin{gathered} \text { B2 } \\ \text { (B1) } \end{gathered}$	2	Deduct 1 mark if not labelled
(b)	b (gradient $)=0.685$	B2		AWRT (0.68502)
	$\begin{aligned} b \text { (gradient }) & =0.68 \text { to } 0.69 \\ a \text { (intercept }) & =0.344 \\ a \text { (intercept }) & =0.34 \text { to } 0.35 \end{aligned}$	$\begin{gathered} \text { (B1) } \\ \text { B2 } \end{gathered}$ (B1)		AWFW AWRT (0.34404) AWFW
	OR Attempt at $\sum x \quad \sum x^{2} \quad \sum y \& \sum x y$ or Attempt at $S_{x x} \& S_{x y}$	(M1)		63040344435 \& 27853 (all 4 attempted) $654 \& 448$ (both attempted)
	Attempt at correct formula for b (gradient) $b($ gradient $)=0.685$	$\begin{aligned} & \text { (m1) } \\ & \text { (A1) } \end{aligned}$		AWRT
	$a(\text { intercept })=0.344$ Accept $a \& b$ interchanged only if then identified correctly by a stated or used equation in (c) or (d)	(A1)	4	AWRT
(c)	Figure 1: Correct line $(50,34$ to 35$)$ $(60,401 / 2$ to 42$)$ $(70,471 / 4$ to 49$)$ $(80,54$ to 56$)$	B2dep		Dep on $\geq \mathrm{B} 1 \mathrm{~B} 1$ or $\geq \mathrm{A} 1 \mathrm{~A} 0$ in (b) At least from $x \approx 55$ to 70 Any two
	If B0 but evidence of use of line for ≥ 2 points within range $50 \leq x \leq 80$	(M1)	2	Calc ${ }^{\text {n }}$ or points shown on graph
(d)(i)	$\begin{aligned} & \text { Residual }=y-(a+b x) \\ & {[\text { or }(a+b x)-y] } \end{aligned}$	M1		Used or implied; or equivalent (using graph); ≥ 1 residual correct (2.98)
	$2.5 \text { to } 4(.0) 2.5 \text { to } 4(.0) 2(.0) \text { to } 4(.0)$	$\begin{gathered} \mathrm{A} 2,1 \\ (-1 \mathrm{EE}) \end{gathered}$		AWFW; ignore signs only (3.19) providing all the same
	Mean $=2.3$ to 4(.0)	A1dep	4	AWFW; do not ignore sign (2.96) Dep on previous A2 scored
(ii)	$\begin{aligned} & y_{65}=a+b \times 65 \\ & y_{65}=44 \text { to } 45.5 \end{aligned}$	M1		Use shown or AWFW
	$\begin{array}{r} +[(\mathrm{d})(\mathrm{i})] \text { or }[2.95 \text { to } 2.97] \\ \\ =46 \text { to } 50 \end{array}$	$\begin{aligned} & \mathrm{m} 1 \\ & \mathrm{~A} 1 \end{aligned}$		Use shown or AWFW; ignore sign of mean residual AWFW (47.8)
	Special Cases: Line drawn/calc ${ }^{\text {d }}$ on H, I \& J or linear interp ${ }^{\mathrm{n}}$ using $\mathrm{I} \& \mathrm{~J}=47$ to 49	(B2)		$y_{M}=4.51+0.666 x \Rightarrow 47.8$ OR no evidence of method \{from (d)(i) and/or (d)(ii)\} Evidence of incorrect method $\Rightarrow \mathrm{B} 0$
	44 to 45.5 seen with no evidence \Rightarrow B1		3	
		Total	15	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
7 (a)(i)	$\mathrm{B}(16$ or 25 or 40, 0.45)	M1		Used at least once in (a)(i) to (iii)
	$\mathrm{P}(S=3)=\binom{16}{3}(0.45)^{3}(0.55)^{13}$	A1		May be implied by correct answer Ignore any additional terms
	$=0.021$ to 0.022	A1	3	AWFW (0.0215)
	$\mathrm{P}(S<10)=0.3843$ or 0.2424	B1		Accept 3 dp accuracy from tables or calculation
	$=0.242$ to 0.243	B1	2	AWFW (0.2424)
(iii)	$\begin{align*} \mathrm{P}(15 \leq S \leq 20) \end{aligned} \quad \begin{aligned} & \quad=0.7870 \text { or } 0.6844 \end{align*}$	M1		Accept 3 dp accuracy
				$\begin{aligned} & p_{2}-p_{1} \Rightarrow \mathrm{M} 0 \mathrm{M} 0 \mathrm{~A} 0 \\ & p_{1}-\left(1-p_{2}\right) \Rightarrow \text { M1 M0 A0 } \end{aligned}$
	$\text { minus } \begin{gathered} 0.1326 \text { or } 0.2142\left(p_{2}\right) \\ =0.654 \text { to } 0.655 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Accept 3 dp accuracy / truncation AWFW (0.6544)
	OR B(40, 0.45) expressions stated for at least 3 terms within $14 \leq S \leq 20$ gives probability $=0.654 \text { to } 0.655$	(M1) (A2)	3	Or implied by a correct answer AWFW
(iv)	Mean, $\begin{aligned} \mu=n p=50 & \times 0.45 \\ & =22.5 \text { or } 22^{1 / 2} 2 \end{aligned}$	B1		CAO (22.5 $=22$ or $23 \Rightarrow$ ISW)
	$\begin{aligned} & \text { Variance, } \sigma^{2}=n p(1-p) \\ &=50 \times 0.45 \times 0.55 \\ &=12.3 \text { to } 12.4 \end{aligned}$	B1	2	Accept $123 / 8$ or $\frac{99}{8}$ AWFW (12.375)
(b)(i)	Non-independence of senior citizens travel Senior citizens tend to travel in pairs/groups	B1	1	Or equivalent; but must be a clear indication of non-independent events
(ii)	7.15 am is outside 9.30 am to 11.30 am Cannot use SCPs before 9.30 am Cannot use SCPs @ 7.15 am Cannot use SCPs during morning 'rush hour'			
	Value of p likely to be smaller/different/zero	B1		Or equivalent Accept other sensible reasons
	Data not available Senior citizens not out at this time Passengers likely to be workers/school children		1	Distribution of types of passenger different
		Total	12	
		Paper	75	

