

General Certificate of Education

Mathematics 6360

MS2A Statistics 2A

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	For a 1-year period			
	The number of A grades ~ $P_o(3)$			
	For a 5-year period			
	Number of A grades ~ $P_o(15)$	B1		
	P(Total A-grades > 18)			
	$=1-(Total \le 18)$	M1		
	=1-0.8195	1411		
	= 0.1805			
	= 0.181	A1	3	AWFW 0.180 and 0.181
(b)(i)	$X + Y \sim P_{o}(10)$	B1		
	$P(X+Y \le 14) = 0.917$	M1A1	3	(0.916 to 0.917)
(ii)	X and Y are independent variables	E1	1	
	<u>^</u>	otal	7	

Q	Solution	Marks	Total	Comments
2(a)(i)	ABTotal22-3421325335-39723610840-59271239Total12080200	B1 B1	2	for A values for B values
(ii)	 H₀: no association between area and age profile. H₁: association between area and age profile 	B1		At least H ₀
	$O_i \qquad E_i \qquad \frac{(O_i - E_i)^2}{E_i}$	M1 M1		attempt row & column totals attempt at E_i
	21 31.8 3.6679 72 64.8 0.8000 27 23.4 0.5538	M1		attempt at $\frac{(O_i - E_i)^2}{E_i}$
	32 21.2 5.5019 36 43.2 1.2000 12 15.6 0.8308	M1		attempt at χ^2
	$\sum_{i=1}^{n} O_{i} = 200 \qquad \sum_{i=1}^{n} E_{i} = 200 \qquad X^{2} = 12.554$ $\nu = (3-1)(2-1) = 2$	A1 B1		(AWFW 12.5 to 12.6) provided correct method used
	v = (3-1)(2-1) = 2 $\chi_{1\%}^{2}(2) = 9.210 < 12.554$	B1 B1√		on their ν and χ^2
	Reject H ₀			
	The evidence suggests that the area with which a school is situated seems to have an effect on the age-profile of the staff employed.		9	on χ^2 and calculated value dep on H ₀ correct, if stated
(b)	There seems to be fewer staff employed 22 - 34 age group than expected in school A and more than expected in school B		2	
	To	al	13	

MS2A (cont		Morilya	Total	Commonto
Q	$\frac{\text{Solution}}{\sum_{k=1}^{N} \sum_{k=1}^{N} \sum$	Marks	Total	Comments
3(a)	$\mu = \mathbf{E}(X) = \sum_{\text{all } x} x \mathbf{P}(X = x)$			
	$\mu = (1 \times 0.09) + (2 \times 0.13) + (3 \times 0.50)$			
	$+(4 \times 0.15)+(5 \times 0.12)$	M1		
	$\mu = 3.05$	A1		
	$\sigma^2 = \operatorname{Var}(X) = \operatorname{E}(X^2) - \mu^2$			
	$=10.51-3.05^{2}$	M1		
	=1.2075			
	$\therefore \sigma = \sqrt{1.2075} = 1.10$	A1	4	(1.099)
			•	(1.055)
(b)	$P(\mu - \sigma < X < \mu + \sigma)$			
	= P(1.95 < X < 4.15)	M1		
	$= P(2 \le X \le 4)$	M1		
	= 0.78	A1	3	
	Total		3 7	
4(a)	$\alpha = \frac{1}{-1.25}$			
	$\alpha = \frac{1}{0.4 - (-0.4)} = 1.25$	B1	1	
(b)	$E(R) = \frac{1}{2}(-0.4 + 0.4) = 0$	D1		
	$E(R) = \frac{1}{2}(-0.4 + 0.4) = 0$	B1		
	1			
	$\operatorname{Var}(R) = \frac{1}{12} (0.8)^2 = \frac{4}{75}$	M1		
	12 15			
	Standard deviation $-\frac{2}{2} - 0.231$			
	Standard deviation $=\frac{2}{5\sqrt{3}}=0.231$	A1	3	
(c)	P(R < 3) = P(-0.3 < R < 0.3)	M1		(or seen on diagram)
	$= 0.6 \times 1.25$			
	= 0.75	A1	2	
	Total		6	

Q	Solution	Marks	Total	Comments
5(a)	$\overline{x} = \frac{471}{5} = 94.2$	B1		Or $s^2 = 36.7$
	e			01 5 - 50.7
	<i>s</i> = 6.058	B1		
	$\nu = 4$	B1		
	1-tailed test	DI		
	$t_{crit} = -2.132$	B1		Or seen on diagram
	$H_0: \mu = 100$			_
	$H_1: \mu < 100$	B1		
	94.2-100			their \overline{x} – 100
	$t = \frac{94.2 - 100}{6.058 / \sqrt{5}} = -2.14$	M1A1		
	$\sqrt{5}$			their $s/\sqrt{5}$
	Reject H_0 at 5% level of significance	A1ft		on their <i>t</i> and critical value
	Evidence at the 5% level of significance			
	to support the members' belief that the	E1√	9	(<i>t</i> values only)
	batteries last less than 100 hours.			
(h)	$\overline{x} = \frac{8080}{100} = 101$			
(0)	$\overline{x} = \frac{8080}{80} = 101$			
	$s^2 = \frac{6399}{79} = 81$ or $s^2 = \frac{6399}{80} = 80.0$			
	79 or $3 - \frac{1}{80} - 30.0$	B1		For <i>s</i> (or s^2) and \overline{x}
	<i>s</i> = 9 <i>s</i> = 8.944			
	$H_0: \mu = 100$	B1		
	$H_1: \mu \neq 100$	DI		
	$\overline{X} \sim N\left(100, \frac{81}{80}\right)$ under H ₀	B1		or 100, $9/\sqrt{80}$ used
	$z = \frac{101 - 100}{9/2} = 0.99$	M1A1		allow use of <i>t</i> method
	$\sqrt{80}$			(AWFW 0.99 to 1.00)
	2-tailed test			
	$z_{crit} = \pm 1.96$	B1		on their z and critical value
	Accept H_0 at 5% level of significance	A1√		
	sufficient evidence at the 5% level of	™ 1∧		
	significance to support the manufacturer's			
	belief	E1√	8	
	Total		17	

MS2A (cont) Q	Solution	Marks	Total	Comments
6(a)		B2	2	B1 for line segment (0, 0.2) to (1, 0.6) B1 for correct shaped curve (1, 0.6) to (4,0)
(b)(i)	for $0 \le x \le 1$			
	$F(x) = \int_{0}^{x} \frac{1}{5} (2x+1) dx$	M1		
	$F(x) = \int_{0}^{x} \frac{1}{5} (2x+1) dx$ = $\frac{1}{5} (x^{2}+x) \Big _{0}^{x}$ = $\frac{1}{5} x (x+1)$	A1		
	$=\frac{1}{5}x(x+1)$	A1	3	
(ii)	$P(X \ge 0.5) = 1 - F(0.5)$			
	$= 1 - \frac{1}{5} \times 0.5 \times 1.5$ = 1 - 0.15	M1		
	= 1 - 0.13 = 0.85	A1	2	(OE)
(iii)	$F(q_1) = 0.25$	B1		$\frac{1}{5}x(x+1) = 0.25$
	$F(q_1) = 0.25$ $F(0.5) = \frac{3}{20} = 0.15 < 0.25$			\downarrow
	$F(0.75) = \frac{21}{80} = 0.2625 > 0.25$	M1		Attempt to solve \downarrow
				$q_1 = 0.725$
	:. $0.5 < q_1 < 0.75$	A1	3	$ \downarrow \qquad \qquad$
	Tot		10	
	ΤΟΤΑ		60	

MS2A (cont)