General Certificate of Education (A-level) June 2013

Physics B: Physics in Context
(Specification 2455)
Unit 4: Physics inside and out

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question	Part	Sub	Marking guidance		Guidance notes
1	(a)	(i)	Use of $F-G M m / r^{2}$ Correct substitution of data 491 (490)N	C1 M1 A1	Allow 1 for -correct formula quoted but forgetting square in substitution -missing m insubstitution -substutution with incorrect powers of 10 Condone 492 N ,

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & \text { Up and down vectors shown (arrows at end) with labels } \\ 1 & \text { (a) } & \text { (ii) } & \\ \text { up and down arrows of equal lengths }\end{array}\right]$
B1
B1
allow $W, m g$ (not gravity); $\quad R$ allow if slightly out of line/two vectors shown at feet condone if colinear but not shown acting on body

In relation to surface $W \leq R$ (by eye) to allow for weight vector starting in middle of the body
Must be colinear unless two arrows shown in which case R vectors $1 / 2 \mathrm{~W}$ vector(by eye)

1	(b)	(i)	Speed $=2 \pi r / T$ $2 \pi 6370000 /(24 \times 60 \times 60)$ $463 \mathrm{~m} \mathrm{~s}^{-1}$	B1 B1 B1	Max 2 if not easy to follow Must be 3sf or more
1 (b) (ii) Use of $F=m v^{2} / r$ $1.7(1.66-1.68) ~ N$ C1					

1	(b)	(iii)	Correct direction shown (Perpendicular to and toward the axis of rotation) NB - not towards the centre of the earth	B1	

1	(c)		Force on scales decreases/apparent weight decreases Appreciates scale reading $=$ reaction force The reading would become 489 (489.3)N or reduced by 1.7 N) Some of the gravitational force provides the necessary centripetal force	C1 A1 B1	or $R=m g-m v^{2} / r$
2	(a)	(i)	At infinity gravitational potential is zero 12.6 MJ is needed for each kg moved to get to infinity (OWTTE)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
2	(a)	(ii)	Use of ratios (inverse r law attempt) or $6.32 \mathrm{MJ} \mathrm{kg}^{-1}$ $-6.32 \mathrm{MJ} \mathrm{~kg}^{-1}$	C1 A1	Alternative: attempt to calculates mass of Mars and use to find V
2	(b)	(i)	No change in gravitational PE/still on same equipotential No work done moving along the equipotential surface	B1	PE is the same
2	(b)	(ii)	KE At $\mathrm{D}=1.143 \mathrm{GJ}$ (Allow substitution in formula) Change in gravitational PE $=850 \times 1.04 \mathrm{MJ}=0.884 \mathrm{GJ}$ Total energy at $B=1.143+0.884(G J)=2.027 G J$ Speed at $B=2190 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	
2	(b)	(iii)	Angular momentum $L=I \omega$ and $\omega=v / r$ Combine so $L=m r^{2} \times v / r=m v r$ m is constant so if $v r$ is constant then L is constant	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow demonstration using data
2	(b)	(iv)	There is no external torques/force acting on the satellite	B1	

2	(c)	(i)	$m r \omega^{2}$ or $\frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$ or $v=\frac{2 \pi r}{T}$ Use of period $=24.6 \times 60 \times 60\left(8.86 \times 10^{4} \mathrm{~s}\right)$ or $\omega=7.09 \times 10^{-5}\left(\mathrm{rad} \mathrm{s}^{-1}\right)$ Correct substitution of data $\begin{aligned} & \left(r^{3}=\frac{6.7 \times 10^{-11} \times 6.4 \times 10^{23}}{4 \times 3.14^{2}}\right)\left(8.86 \times 10^{4}\right)^{2} \text { or } r^{3}=\frac{6.7 \times 10^{-11} \times 6.4 \times 10^{23}}{\left(7.09 \times 10^{-5}\right)^{2}} \\ & 2.04 \times 10^{7} \mathrm{~m}(20400 \mathrm{~km}) \end{aligned}$	C1 C1 C1 A1	Condone 1 sf
2	(c)	(ii)	Use of $\Delta E_{p}=G M m\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$ Correct substitution or 10.4 MJ (per kg) 8.9(3) GJ	C1 C1 A1	Allow ecf from (c)(i) Condone incorrect powers of 10 Condone use of formula for energy per kg
3	(a)	(i)	correct period read from graph or use of $f=1 / T \quad 0.84 \pm 0.01$ correct frequency 1.2 (1.18-1.25 to 3 sf)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	2.4 Hz gets C1
3	(a)	(ii)	correct shape (inverse) Crossover $\mathrm{PE}=\mathrm{KE}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
3	(b)	(i)	Use of $T=2 \pi \sqrt{\frac{l}{g}}$ 48.7 (49) m	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	

3	(b)	(ii)	$v=120000 / 3600=33(.3) \mathrm{m} \mathrm{~s}^{-1}$ Use of $F=m v^{2} / r$ (allow v in $\mathrm{km} \mathrm{h}^{-1}$) Total tension $=6337+(280 \times 9.81) \quad=9.083 \times 10^{3} \mathrm{~N}$ Allow their central force Divide by $4 \quad 2.27 \times 10^{3} \mathrm{~N}$ Allow their central force	B1 B1 B1 B1	
3	(b)	(iii)	$\begin{aligned} & m g h=1 / 2 m v^{2} \\ & 9.8 \times 44=0.5 v^{2} \quad \text { Allow } 45 \text { in substitution } \\ & 29.4 \mathrm{~m} \mathrm{~s}^{-1} \quad \text { (Use of } 45 \text { gives 29.7) } \\ & 106 \mathrm{~km} \mathrm{~h}^{-1} \text { (their } \mathrm{m} \mathrm{~s}^{-1} \text { correctly converted) } \\ & \begin{array}{l} \text { Or compares with } 33 \mathrm{~m} \mathrm{~s}^{-1} \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Condone: Use of $v=2 \pi f A(\max 2)$ Condone $22 \mathrm{~m} \mathrm{~s}^{-1}$
3	(b)	(iv)	$1 / 16^{\text {th }}(0.625) \%$ of KE left if correct KE at start $=5.6 \times 10^{4} \mathrm{~J}$ or states energy \propto speed 2 so speed is $1 / 4$ Final speed calculated $=5 \mathrm{~m} \mathrm{~s}^{-1}$	M1 M1 A1	Allow 1/8 (0.125)or 1/32(0.313) Allow for correct sub ${ }^{n} E=1 / 2280 \times 20^{2} x$ factor from incorrect number of swings calculated correctly Must be from correct working
4	(a)	(i)	Attempt to use Pythagoras' theorem using 4700 and 1200 $4850 \mathrm{~m} \mathrm{~s}^{-1}$ (3sf only)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Allow final speed close to 1200
4	(a)	(ii)	Change in direction given by $\tan \theta=1200 / 4700$ $14(.3)^{\circ}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Method may use data from 4(a)(i) Allow C1 for 75.7°
4	(b)		Attempt to find area under the graph Count squares $=55 \pm 2$ or distance per square $=400 \mathrm{~m}$ $22 \mathrm{~km} \quad(21.2 \mathrm{~km} \rightarrow 22.8 \mathrm{~km})$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow 1 for thinking the graph is linear (gets 24 km)

4	(c)	(i)	Substitution of final speed and fuel ejection speed correct in rocket equation $1200=2500 \ln \left(3500 / \mathrm{m}_{\mathrm{f}}\right)$ $m_{f}=2166 \mathrm{~kg}$ rate of ejection of fuel $=(3500-2166) / 40=33(.4)$ (allow their m_{f}) $\mathrm{kg} \mathrm{~s}^{-1}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	Allow if speeds wrong way round Correct substitution
4	(c)	(ii)	Thrust = change in momentum of fuel per second $83000 \text { N(ecf from (c)(i) }$	C1 A1	Thrust = initial acceleration of the rocket Allow 1 for rate of change from change in momentum of rocket(3500 $\times 1200 / 40$) If allowance made for fuel loss to give mean mass during asseleration then answer can score 2 (i.e.35001330/2)1200/40) $3500 \times$ gradient at $\mathrm{t}=0$ approach can score 2

4	(d)		Fuel used up so mass of spacecraft falls Since $F=m a$ Thrust is constant Acceleration increases - gradient of graph increases	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	
5	(a)	(i)	arrow shown left to right between the poles of the magnets	B1	
5	(a)	(ii)	Attempt to use of $F=B I L$ Correct calculation of the force 1.07×10^{-5} leading to $30 \mu \mathrm{~T}$ T	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Condone $3 \times 10^{-5}(1 \mathrm{sf})$

5	(b)		Component of B perpendicular to wire decreases Reading falls Or Field changes direction / force changes direction reading would decrease	A1	

| 6 | (c) | always above first curve similar shape
 peaks in same place
 shortest wavelength and peak wavelength of continuous spectrum
 decreases | B1
 B1 | Shortest wavelength must be non-zero |
| :--- | :--- | :--- | :--- | :--- | :--- |

6	(d)	(i)	$E=h f$ $5.3-5.4 \times 10^{18} \mathrm{~Hz}$	C1 with 22.1 condoning no conversion to J	A1

6	(d)	(ii)	Attempt to show $E /(Z-1)^{2}=$ constant stated Or correct alternative method two calculation correct three correct with conclusion/or states/or shows clearly that $E \propto f$	B1 B1 B1	

| 6 | (e) | short wavelength needed
 silver (has the highest energy so lowest wavelength) | B1 | B1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 6 | (f) | Use of a grid in front of the photographic plate/detector (allow diagram)
 grid eliminates X rays that have been scattered or only allows direct
 rays/photons from the source to hit the plate | B1 | B1 |
| :---: | :---: | :---: | :--- | :---: | :---: |

| 6 | (g) | X-rays are absorbed /transmitted differently by different density material
 OWTTE
 ultrasound is reflected differently by different density material OWTTE | B1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

