

General Certificate of Education (A-level) January 2013

Physics B

PHYB4

(Specification 2455)

Post-Standardisation

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

1	а	zero potential at infinity (a long way away)	B1	2	
		energy input needed to move to infinity (from the point)	B1		
		work done by the field moving object from infinity			
		potential energy falls as object moves from infinity			

1	b	Any pair of coordinates read correctly	C1	3	±1/2 square
		Use of E_{ρ} or $V=(-)\frac{GM}{r}$	C1		Rearrange for M
		$6.4 (\pm 0.5) \times 10^{23} \mathrm{kg}$	A1		

1	С	Reads correct potential at surface of Mars = -12.6 (MJ)	C1	3	or reads radius of mars correctly(3.5 x10 ⁶)
		equates to $\frac{1}{2}v^2$ (condone power of 10 in MJ)	C1		use of v=√(2GM/r) with wrong radius
		$5000 \pm 20 \text{ m s}^{-1}$ (condone 1sf e.g. 5 km s ⁻¹)	A1		e.c.f. value of <i>M</i> from 1(b) may be outside range for other method 6.2 x 10 ⁻⁹ x √their <i>M</i>

1	d	Attempts 1 calculation of Vr	B1	3	Many values give 4.2 so allow mark is
		Two correct calculation of <i>Vr</i>	B1		for reading and using correct coordinates
		Three correct calculations with conclusion	B1		but allow minor differences in readings
					Ignore powers of 10 but consistent

2	а	$F = \frac{GM(m)}{r^2} \text{used}$	C1	4	Allow $g = $ instead of $F = $
		mass difference = $(4/3) \pi 600^3 4700 = 4.2 \times 10^{12} \text{ (kg)}$	C1		Allow for one mass calculated correctly(allow correct substitution) i.e mass of ore body or mass of displaced 'earth' (6.5 x 10 ¹² or 2.3 x 10 ¹²)
		correct answer 0.00058 N kg ⁻¹	A1		
		correct conversion of their N kg ⁻¹ to gal their N kg ⁻¹ x 10 ² gal (58 m gal or 5.8 x 10 ⁻² gal if answer correct)	B1		

2	b	i	Attempt to manipulate formula to give T^2	B1	3	
			correct manipulation to $g = \frac{4\pi^2 L}{T^2}$	B1		
			correct conclusion identifying $(4\pi^2)L$ constant for a given pendulum	B1		

PHYB4

2	b	ii	Attempt to find fractional uncertainty in T (= 0.000004)	B1	3	Attempt to calculate g for T = 25.0001 or 24.9999,
			double the uncertainty	B1		Correct g for24.9999 or 25.0001
			Detectable change = $0.000008 \times 9.81 (0.000078 \text{ N Kg}^{-1})$	B1		Subtracts 9.81 to find answer allow 1 sf
						OR
						Uses gT^2 = constant (6131.25) or uses
						ratios
						Correct g for 24.9999 or 25.0001
						Subtracts 9.81 to find answer allow 1 sf

2	b	iii	Use of equation to deduce L = 150 m	B1	2	Allow if done in (2(b)(ii)
			concludes that length will be impracticably/too long	B1		Condone loose terminology here: too
						big/large
			Or			Allow any 2 in coherent answer
			Mentions that damping effects and the long time period	B1		
			Oscillations may die away too quickly to allow measurement of T			
			Or			
			Need to make measurements over a long time to detect the	B1		
			change in time period			
			so survey would a take long time	B1		

2	b	iv	Quote formula for a mass-spring system	B1	2	
			Identifies that period is independent of <i>g</i> Or <i>g</i> is not in the formula for period of a mass spring system)	B1		
			Or depends only <i>M</i> and <i>k</i>			

3	а	i	Attempt to use volume = mass/density (1.4/810 seen)	C1	2	Condone 0.028
			0.00173 m ³	A1		
2	Τ.	1 ::	quantity of gap. 1.4/0.020 mal or tamperature. 200 K yand	C1	3	Allow 1.4/28
3	а	lii	quantity of gas = 1.4/0.028 mol or temperature =298 K used		3	Allow 1.4/28
			use of $pV = nRT$	C1		
			Correct answer 1.24 m ³	A1		
3	b		momentum is conserved	B1	3	
			gas ejected (backwards) so its momentum changes/it is given	B1		ejected gas has momentum OWTTE
			momentum			
			or force needed to produce change in momentum			NB
			equal and opposite change in momentum of the astronaut	B1		NB not momentum of astronaut =
			equal and opposite force on the astronaut			momentum of gas
3	С	i	Use of <i>F=ma</i> 3.56/151 seen	C1	2	
			Use of <i>F=ma</i> 3.56/151 seen 0.024 m s ⁻²	A1		
3	С	li	Use of rocket equation	C1	3	Allow 1 for direct use of conservation of
3		"	Ose of Tocket equation		3	momentum 329
			2.05 151	C1		
			$3.05 = v_o \ln \frac{151}{149.6}$ $327 (330) \text{ m s}^{-1}$			
			327 (330) m s ⁻¹	A1		
3	С	Tiii	Time for which rocket accelerates given by final $v = at$	C1	3	or <i>Ma</i> = 3.56 = (d <i>m</i> /d <i>t</i>) <i>v</i>
		""	t = 3.05/0.024) ecf from (c)(i)			01 101a = 0.00 = (a111/at) v
			t = 127 - 129 s ecf	A1		or 151 x c(i) = (dm/dt) x c(ii)(ecf)
			1.4/their time 0.011 (kg)	B1		0.011 (kg) ecf
			· • ·			

3	d		gas does work as it expands/W is negative	B1	3	
			ΔU is negative (allow temperature of gas falls)	B1		
			Q = 0/No thermal energy input or output	B1		
4	а		Use of cos 20 or sin 70 or <i>F</i> (horizontal) = 30/1.3 = 23.1	C1	2	
			24.6 (N)			
4	b	i	angular acceleration = T/I	C1	5	
			$30/240 = 0.125 \text{ rad s}^{-2}$	A1		
			θ = 180° or π seen	B1		
			$\omega^2 = 2 \times 0.125 \times \pi \text{ or } \omega^2 = 2\alpha\theta$	B1		Allow substitution with their α and θ =180
			0.886 (2 or more sf)	B1		
4	b	ii	Use of conservation of angular momentum or use of $T = 2\pi/\omega$	C1	4	variations for use of 0.89 and reasonable rounding errors allowed
			Initial angular momentum 240 $ imes$ 0.9	C1		Touriding errors allowed
			(allow 212 to 216) (kg m ² s ⁻¹)			
	+		Final angular speed = 0.76 rad s^{-1}	A1		
		+	8.3 s Allow ecf from incorrect ω (likely to be 7.0 s or 7.1 s allow 1	B1		
			sf)			
4	b	iii	Energy = $\frac{1}{2} I\omega^2$	C1	3	
			Calculation of one energy correctly 97J or 82 J	C1		Allow 115 J from ½ (240+45) x 0.9 ²
			Calculates both correctly and subtracts (15J)	A1		
4	b	iv	Collision is inelastic	B1	1	
			or Energy converted into heat/internal energy when child jumps			
			0			
			or work done against friction at contact point when child jumps on			

	-1				,	
4	С	i	acceleration is (rate of change)of velocity	B1	3	
			velocity is a vector or has (magnitude and) direction	B1		
			direction of (linear motion) is changing	B1		
			or			
			acceleration = force/mass	B1		
			there is a force on the child toward the centre of the roundabout	B1		Mention of centripetal force/acceleration
			Some discussion of how the force arises(friction or holding on)	B1		
			•			
4	С	ii	Mention of Newton's third law or equivalent statement	B1	2	Equal and opposite force on child and
			·			roundabout
			application to the situation (applying force to the object he is on)	B1		
			or			
			Child is part of the system	B1		
			Is not providing an external torque force	B1		
5	а	i	Air or (other transmitting) body is in contact with the crystal	B1	2	ANY 2 condone air resistance
			The vibrational energy of the crystal energy becomes energy of the ultrasound wave	B1		Not losses as waves travels through the body
			as energy converted energy in to vibrational energy of the particles in the body	B1		
			Energy losses due to friction between atoms inside the crystal			
5	а	ii	appreciates energy proportional to amplitude ²	C1	3	
			75% loss	A1		
			Average energy loss per mm = 3% or divides their percentage energy loss by 25(likely answer 1%)	B1		2% for those who forget to square
5	b		High frequency means short wavelength	B1	2	ANY 2
			high resolution /higher quality image	B1	1	Not just better but condone clearer
			objects of the order of magnitude of wavelength can be seen owtre			
			Owno			

MS

Version 3.0

MS

5	С	use of $v = f\lambda$	C1	2	
		$100 \mu \text{m}$ $1(.0) \times 10^{-4} \text{m}$	A1		

5	d	Use of $T = 1/f$	C1	3	
		Time between pulses = 1 ms	C1		
		Number of ultrasound oscillations in 1 ms = 15000	A1		

5	е	Usual QOWC marking	6	
		Points which should occur:		5/6 will address each section
		A Pulse sent though body		6 should have no omissions and be well
		Reflection at tumour		written
		Detect time between transmitted and received pulse		5 will omit detail in A or C or have faults in
		Distant below surface of body = vt/2		communication
		B Cannot detect difference between similar density tissue		3/4 will
		Reflections too weak		4 will have acceptable communication skills
		Reflections at interface		and
				address A thoroughly and be
		C Use ex CT MRI scanners Some detail on how these are better e.g. no reliance on reflection of waves		inadequate elsewhere address A and C but omit detail will have very poor communication but satisfy the two bullets above.
				1/2 will give a brief superficial response low in factual content and is likely to show very poor communication

6	а	sketch correct general shape including characteristic lines	C1	3	
		a minimum wavelength (no-zero)and a peak			
		Correct lower wavelength shown on axes	C1		
		or Characteristic wavelengths in correct positions			
		Completely correct – no second intercept	A1		

only those travelling in straight line get to the plate

MS

6	b		Use of E=hc/ λ or attempt using eV = hf	C1	3	
			Use of E=hc/ λ or attempt using eV = hf $1.6 \times 10^{19} \times V = 6.6 \times 10^{-34} \times 3 \times 10^{8} / (0.035 \times 10^{-9})$	C1		allow any wavelength and condone power of 10 in wavelength
			35 .4 kV	A1		
6	С		Incident electrons excites/removes electrons in, or ionises the target atoms	B1	4	
			photons emitted	B1		
			Electrons relax(fall) into lower energy state(ground state)	B1		Not just changing levels
			Inner energy levels transitions /large energy drops/high energy photons give rise to X rays	B1		
6	d	i	x-ray power = 40 W or X-ray power = 1560 W	C1	2	Allow 2400 J for 1 mark
			Energy wasted per minute = 93600 (94000)J	A1		
6	d	ii	Large amount of energy becomes internal energy of the target/raises temperature of the target	B1	3	condone 'heat'
			Unless energy removed target would melt/or needs cooling system	B1		
			either rotating anode or liquid /air cooling system	B1		
				•		
6	е		ANY Three			
			improves quality of image/reduces blurring	B1	3	
			X ray photons scattered when passing thought the body	B1		
			lead grid absorbs (some)scattered X-rays so	B1		

B1