Version 1.0

General Certificate of Education (A-level) January 2012

Physics B: Physics in Context

PHYB4

(Specification 2455)

Unit 4: Physics inside and out

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK This is a mark which is independent of M and C marks.

ecf is used to indicate that marks can be awarded if an error has been carried forward (ecf must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (**cao**) is required, this means that the answer must be as in the marking scheme, including significant figures and units.

cnao is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Marks should be awarded for **correct** alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

Question 1			
a i	mention of reaction	C1	2
	no reaction	A1	2
a ii	equate mgh and $\frac{1}{2}mv^2$	B1	2
	39.6 (m s ⁻¹)	B1	2
a iii	use of $s = \frac{1}{2}gt^2$	C1	2
	4.1/4.0	A1	2
b i	positive slope from (0,0)	B1	
	negative slope to (6,0)	B1	3
	straight lines and meet at (4,40) ecf for time (2:1)	B1	
b ii	reaction is greatest/increases/greater	B1	1
b iii	R - mg = ma or $R = m (g + a)$	C1	2
	$R = 2.2 \times 10^3$ (N)	A1	2
c i	correct substitution $mgh = \frac{1}{2} kx^2$	C1	
	$1.9(1) \times 10^4$	A1	3
	N m ⁻¹	B1	
c ii	substitution into period equation	C1	2
	2.2 (s) ecf from ci	A1	2
c iii	$a_0 = -\omega^2 x_0 = (2\pi/2.2)^2 \times 15$	C1	
	= 120 m s^{-2} (~ $12 g$) (ecf gives 9.7)/ F_0 = $2.8 \times 10^5 \text{ N}$	A1	3
	(big thrill but) dangerous (or ecf in line with period eg safe for 7.8 s period)	B1	
		Total	20

GCE Physics	Specification	B: Physics in	Context, PHYB4,	Physics Inside and Out
			, , ,	

Qu	estion 2			
а	i	reaction and weight labelled	B1	0
		sensible positions and directions	B1	2
а	ii	mention of reaction contributing ('providing') centripetal force	B1	
		providing rider moves fast enough weight will not exceed the required centripetal force	B1	2
b	i	1.6(1)	B1	2
		rad s ⁻¹	B1	Z
b	ii	840 – 860 (N)	B1	1

b iii	i	for A $R - mg$ – centripetal force or	C1	
		for B $mg + R$ = centripetal force	CI	2
		for A 1400 – 1500 (N)	A1	3
		for B 240 – 270 (N)	A1	
С		The marking scheme for this question includes an overall assessment for the quality of written communication (QWC). There are no discrete marks for the assessment of QWC but the candidate's QWC in this answer will be one of the criteria used to assign a level and award the marks for this question.		
		Descriptor – an answer will be expected to meet most of the criteria in the level descriptor.		
		Level 3 – good		
		claims supported by an appropriate range of evidence		
		 good use of information or ideas about physics, going beyond those given in the question 		5-6
		 argument well-structured with minimal repetition or irrelevant points 		
		 accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling 		
		Level 2 – modest		
		 claims partly supported by evidence 		
		 good use of information or ideas about physics given in the question but limited beyond this 		3-4
		 the argument shows some attempt at structure 		
		 the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling 		
		Level 1 – limited		
		 valid points but not clearly linked to an argument structure 		
		 limited use of information about physics 		1-2
		unstructured		
		 errors in spelling, punctuation and grammar or lack of fluency 		
		Level 0		
		 incorrect, inappropriate or no response 		

Examples of the sort of information or ideas that might be used to support an argument		
number of people affect the moment of inertia		
• $l = \sum mr^2$		
 larger mass leads to a larger moment of inertia 		
• $T = I\alpha = I \frac{\omega_{\rm f} - \omega_{\rm i}}{t}$		
 so for constant torque and change of angular momentum the time needs to be longer for a larger moment of inertia 		
 <i>P</i> = <i>T</i>ω so need to increase power or reduce angular speed for same power 		
 lack of symmetry will lead to stress on ride 		
uneven torques		
damage to bearings etc		
	Total	16

Question 3			
а	work done per unit mass in bringing object from infinity to point	B1	
	potential at infinity zero by definition	B1	3
	work has been done by the field so potential at all points closer than infinity negative	B1	
b	use of point on graph allow within \pm small square	C1	
	substitution into $V = -\frac{GM}{r}$	C1	3
	range from 590 – 6.90 × 10 ²⁴ (kg)	A1	
c i	$\Delta E_{\rm p} = -\frac{GMm}{R_{\rm E}+h} + \frac{GMm}{R_{\rm E}}$	C1	
	addition of radius of Earth to give 7.25 \times 10 ⁶ (m)	C1	3
	$1.54 \times 10^{10} (J)$	A1	
c ii	equates $\frac{mv^2}{r}$ and $G \frac{mM}{r^2}$	C1	
	to give $\Delta E_{\rm K} = G \frac{mM}{2} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$	C1	4
	$1.25 \times 10^9 $ J	A1	
	positive or increase	B1	
c iii	(lower altitude so) gpe decreases ke increases	C1	2
	loss of gpe is twice gain in ke	A1	۷.
		Total	15

Ques	tion 4			
а		max 3 from		
		gravity survey	B1	
		magnetic survey	B1	
		seismic survey	B1	max 3
		ground penetrating radar (not just 'radar')	B1	
		aerial survey	B1	
		not metal detection		
b	i	curves joining ${\bm P}_1$ and ${\bm P}_4$ with four lines, fairly evenly spaced in the middle – not crossing	B1	1
b	ii	current shown from \mathbf{P}_4 to \mathbf{P}_1	B1	1
b	iii	max 2 from		
		(conventional) current goes from positive to negative	B1	
		shows direction of electric field	B1	max 2
		current flows between \mathbf{P}_4 and \mathbf{P}_1	B1	
		argues that paths not changed at interface/no shape change	B1	
с	i	different soil type/anomaly roughly 10 m from origin/anomaly 5-8 m wide	B1	
		either side of anomaly could be clay or limestone (300-400 $\Omega m)$ – allow one of these soil types	B1	3
		anomaly could be sandy, limestone or sandstone (580-670 Ω m) – two of three soil types needed	B1	
с	ii	max 2 from		
		depends on moisture content	B1	
		limited depth measureable	B1	
		equipment bulky/cumbersome/time-consuming (to use)/difficult in insert probes in hard soil	B1	max 2
		water can give spurious results	B1	
		cannot identify soil types precisely	B1	
		unreliable because of electrode contact resistances	B1	
		spurious emfs generated when electrodes on contact with salts	B1	
			Total	12

Question 5			
a i	resistance zero	B1	2
	at or below transition/critical temperature	B1	Z
a ii	max 2 from		
	very strong magnetic fields required	B1	max 2
	no cooling needed/no heat dissipated (in coils)	B1	
	high currents needed to produce these	B1	
b i	rearrangement seen: $k = (-) \frac{\omega}{B_0}$	C1	2
	rad $s^{-1} T^{-1}$	A1	
b ii	$(\omega =) 6.5 \times 10^8$	C1	
	recognition that $\omega = 2\pi f$	C1	3
	$1.0(3) \times 10^8$ (Hz)	A1	
с	when frequency matched resonance occurs	B1	
	maximum energy transferred (to protons)/stronger signal/larger induced emf/larger amplitude of precession	B1	2
d	$\frac{\Delta \Phi}{\Delta t} = 1.7 \times 10^{-8} \mathrm{Wb} \mathrm{s}^{-1}$	C1	
	$E = N \frac{\Delta(BA)}{\Delta t}$ or substituted values irrespective of powers	C1	3
	$3.51 \times 10^{-5} (V)$	A1	
е	max 2 from		
	advantages		
	safe and no ionising radiation	B1	
	any plane or orientation slice can be used/3D images	B1	
	excellent soft tissue contrast/more detail possible	B1	
	and max 2 from		max 4
	disadvantages		max 4
	high costs (all types)	B1	
	complex use – training and cost of professional operator	B1	
	(claustrophobia) takes long time (for patient to be in scanner)	B1	
	hazard to implants	B1	
	limit to body size of patient	B1	
		Total	18

Que	stion 6			
а	i	<i>T</i> = 293	C1	
		rearrangement of or substitution into $pV = nRT$	C1	3
		0.037 mol	A1	
а	ii	max 2 from		
		pressure very high	B1	
		molecules too close	B1	max 2
		intermolecular forces present	B1	
		liquid in bulb	B1	
b		reference to first law equation		
		gas emitted rapidly so adiabatic/no time for heat exchange	B1	
		Q=0	B1	4
		work done by gas on surroundings (W -ve)	B1	
		internal energy reduced and temperature falls (ΔU –ve)	B1	
с		max 3 from		
		no external force acting/closed system	B1	
		gas expelled in one direction so rocket moves in opposite direction	B1	
		total momentum at start is zero	B1	max 3
		at any instant total momentum of whole system is still zero	B1	
		so change in momentum of gas = change in momentum of rocket	B1	
		appropriate equation	B1	
d	i	use of $Ft = mv - mu$	C1	
		$85 \times 10^{-3} \times 18 = F \times 5.0 \times 10^{-2}$	C1	3
		31 (N)	A1	
d	ii	gas speed much higher	B1	2
		total mass of gas less than bulb	B1	2
е		max 2 from		
		limited amount of gas/limited thrust	B1	
		difficult to control release	B1	may 2
		thrust falls as pressure reduces/short-lived thrust	B1	IIIUA E
		efficiency falls as pressure reduces	B1	
		more gas means more massive container	B1	
			Total	19

UMS conversion calculator	www.aqa.org.uk/umsconversion