Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination January 2010

Physics (B): Physics in Context PHYB2

Unit 2 Physics Keeps Us Going

Module 1 Moving People, People Moving Module 2 Energy and the Environment

Monday 18 January 2010 1.30 pm to 2.45 pm

For this paper you must have:

- a pencil and a ruler
- a calculator
- a Data and Formulae Booklet.

Time allowed

• 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

You are advised to spend about 20 minutes on Section A and about 55 minutes on Section B.

Section A

Answer all questions in this section.

There are 20 marks in this section.

1 The table shows the total UK energy consumption of various energy sources during 2007.

energy type	energy consumption 10 ¹⁷ J
nuclear	6.5
coal	17.1
gas	37.8
oil	31.8
renewable and biofuels	1.8

Calculate the percentage of the total UK energy coenergy.	•
	percentage % (3 marks)

2 Circle the letter that corresponds to the best completion of the statement.

The effect of human activity on global warming is

- A almost entirely due to the release of sulphur dioxide.
- B not accepted by all scientists.
- C almost entirely due to radioactive decay from nuclear power.
- D mainly caused by changes in the ozone layer.

(1 mark)

3 Figure 1 shows a long-distance swimmer swimming due north at $1.3 \,\mathrm{m\,s^{-1}}$ in a tide that flows at $1.0 \,\mathrm{m\,s^{-1}}$ due east.

Figure 1

N

speed of swimmer towards due north 1.3 m s⁻¹

3 (a) Calculate the magnitude of the resultant velocity of the swimmer.

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••

.....

magnitude of resultant velocity m s⁻¹
(2 marks)

3 (b) Calculate the angle the resultant velocity of the swimmer makes with due north.

•••••	•••••	•••••	•••••	 •••••

angle degrees (2 marks)

,

•••••		
•••••		•••••••
••••••		
	diameter	
		(4 mark
Δ etu	dent wishes to compare an energy-efficient lamp with a conventional filame	ant lamp
	two factors that will determine which of the two lamps is the more cost-eff	
Tacto	: 1	
•••••		
factor		
factor	2	
factor		

6	A ca	r of mass 1300 kg is stopped by a constant horizontal braking force of 6.2 kN.
6	(a)	Show that the deceleration of the car is about $5 \mathrm{ms^{-2}}$.
		(3 marks)
6	(b)	The initial speed of the car is 27 m s ⁻¹ . Calculate the distance travelled by the car as it decelerates to rest.
		distance travelled m (3 marks)

20

Section B

Answer all questions in this section.

There are 50 marks in this section.

7 Figure 2 shows how the maximum electrical power output of a wind turbine varies with wind speed.

The percentage efficiency of a wind turbine is given by

 $\frac{\text{maximum electrical power output}}{\text{maximum power available from the wind}} \times 100 \%$

7	(a)	(1)	When the wind speed is $16 \mathrm{ms^{-1}}$ the maximum power available from the wind is 32 MW. Calculate the minimum length of one of the blades in the turbine. density of air = $1.3 \mathrm{kgm^{-3}}$
			minimum blade length m (3 marks)

7	(a)	(ii)	Using Figure 2 , determine the maximum electrical power output of the wind turbine when the wind speed is $16 \mathrm{ms^{-1}}$.	
			output power	
7	(a)	(iii)	Calculate the percentage efficiency of the wind turbine for a wind speed of $16\mathrm{ms^{-1}}$.	
			percentage efficiency	
			(1 mari	(3)
7	(b)	(i)	Suggest why there is no power output from the turbine in region A of Figure 2.	
			(1 mar)	k)
7	(b)	(ii)	Explain why the power output falls to zero at high wind speeds.	
			(1 mari	
7	(b)	(iii)	Wind farms are often located in hilly areas. State and explain any change in wind speed as air flows over a hill.	
				•••
			(3 mark	 s)

8 Figure 3 shows a circuit that can be used to sense temperature changes. Sensing is possible because the potential difference across the thermistor changes as the temperature changes.

Figure 3

The power supply has a negligible internal resistance and the resistor ${\bf R}$ has a resistance of $67\,\Omega$.

8	(a)	Whe	n the thermistor is at a high temperature the potential difference across it is 4.5 V.					
8	(a)	(i) Calculate the potential difference across R .						
			potential differenceV (1 mark)					
8	(a)	(ii)	Calculate the current in the circuit.					

(2 marks)

8	(b)	(i)	The temperature of the thermistor changes to 25 °C and its resistance becomes 360Ω . Show that the potential difference across the thermistor at 25 °C is about 10 V.
			(3 marks)
8	(b)	(ii)	Calculate the power dissipated in the resistor $\bf R$ when the thermistor temperature is 25 °C, giving an appropriate unit for your answer.
			power dissipated
			(4 marks)

Question 8 continues on the next page $\,$

8 (c) The circuit is modified as shown in **Figure 4**. A resistor of resistance 570Ω is connected in parallel with the thermistor.

Figure 4

		For the circuit in Figure 4 calculate the current in the 67Ω resistor when the thermistor temperature is 25°C .
		current in 67 Ω resistor
8	(d)	Explain, in terms of charge carriers, why the resistance of the thermistor decreases as the temperature rises.
		(3 marks)

9 English longbows from the time of Henry VIII were found on board a sunken Tudor warship. **Figure 5** shows how the horizontal force, *F*, exerted by an archer on the bow string varies with the horizontal displacement, *d*, of the arrow as the bow is drawn.

Figure 5

9 (a) (i) Show that the energy stored in the bow is

$$\frac{1}{2} F_{\text{max}} d_{\text{max}}$$

where F_{max} is the maximum force in the bow and d_{max} is the maximum displacement of the bow string.

9 (a) (ii) Show that the maximum speed, *v*, with which an arrow can leave the bow is given by

$$v = \sqrt{\frac{F_{\text{max}}d_{\text{max}}}{m}}$$

Question 9 continues on the next page

where m is the mass of the arrow.

.....

(2 marks)

9	(b)		arrow had a mass of 0.060 kg and the bow string was displaced by a maximum of m before releasing the arrow. The archers needed to exert a maximum force of N.
9	(b)	(i)	Show that the maximum speed of the arrow as it leaves the bow is about $80\mathrm{ms^{-1}}$.
			(2 marks)
9	(b)	(ii)	State one reason why the speed of the arrow as it leaves the bow is likely to be less than $80\mathrm{ms^{-1}}$.
			(1 mark)
9	(c)	arrov	initial speed of an arrow as it leaves a bow is $65 \mathrm{ms^{-1}}$. When leaving the bow the w travels at an angle of 55° to the horizontal. Assume that the air resistance is gible.
9	(c)	(i)	Show that the vertical component of the initial speed of the arrow is about $53\mathrm{ms^{-1}}$.

13

9	(c)	(ii)	The arrow is fired from ground level across a flat, level field. Show that the arrow is in flight for about 11 s.
			(3 marks)
9	(c)	(iii)	Calculate the horizontal distance travelled by the arrow when fired from level ground.
			horizontal distance travelled

Turn over for the next question

(a	ı)	A one-man toboggan ride down the Cresta Run takes 65 s. Calculate the average speed along the track.		
		average speed m s ⁻		
) (b)	By considering the loss of gravitational potential energy, calculate the theoretical maximum speed at the end of the run.		
		theoretical maximum speed		

(c)	Shuttlecock Corner on the Cresta Run is designed so that riders who are out of control can leave the run relatively safely. Riders falling here land on a mixture of straw and snow.
	Explain why the straw and snow mixture provides a safer landing area than the frozen ground on which the mixture rests.
	The quality of your written communication will be assessed in this question.
	(6 marks)
	END OF OUESTIONS

WMP/Jan10/PHYB2

