

General Certificate of Education (A-level)
June 2013

Physics B: Physics in Context PHYB2

(Specification 2455)

Unit 2: Physics keeps us going

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question	Part	Sub Part	Marking Guidance		Mark	Comments
1			no yes yes no no no yes no	4	B1 B1 B1 B1	each row correct for the mark
2			390 or 3.9 x 10 ² W or J s ⁻¹ or J/s	2	B1 B1	allow kW values and correct base unit
3	(a)		substitution or rearrangement of equation of motion 1.5(3 s)	2	C1 A1	allow method using two equations of motion allow methods using double the time to maximum height or total time
3	(b)		any appropriate equation of motion used 2.8(7 m) ecf from (a)	2	C1 A1	
4	(a)		recognition that 39 (J) is input and 1.2 (J) is output recognition that $1.2(3) \approx 0.35 \times 0.9 \times 0.1 \times 39$ (J)	2	B1 B1	0.9 x 0.1 x 39 (J) = 3.51(J) 0.35 x 3.51(J) = 1.2(3 J) gains two marks
4	(b)		a minimum of two arrows two of 20-30 squares (≈26 J),1-3 squares (≈1 J),10-12 squares(≈ 11 J) by eye thermal/internal energy/heat (loss) labelled a minimum of once	3	C1 A1 B1	condone arrows with values of losses for second marking point penalise contradictions

5	(a)		potential divider formula used or current found to be 0.25 A 2.0 V	2	C1 A1	allow 1 s.f. 1.0 V (with working) gains 1
						mark
				1	C1	1
5	(h)		main current =1.2 V/4 Ω = 0.3 (A) R _{total} = 1.8 V/0.3 A = 6 Ω or I_8 = 0.225 (A)	3	C1 C1	
3	(b)		$R_{\text{total}} = 1.6 \text{ V/0.3 A} = 6.22 \text{ Of } I_8 = 0.223 \text{ (A)}$ $R_{\text{V}} = 24 \Omega$	3	A1	
			1 TV - 24 22			<u> </u>
			$d = \frac{45}{45} + \frac{45}{45} = \frac{45}{45} + \frac{45}{45} = \frac{45}{45} + \frac{45}{45} = $		C1	
6	(a)		$k = \frac{45}{30^2} \left(= \frac{45}{900} = 0.05 \right) \text{ or } \frac{d}{45} = \frac{15^2}{30^2} \left(= \frac{1}{4} \right)$	2	A1	
			d = 11.25 (m)			
	1		V+II	1	C1	allow use of more than one
			rearrangement or substitution into $v^2 = u^2 + 2$ as or $s = \frac{v + u}{2}t$		A1	equation of motion provided it
6	(b)		a = (-) 10 or t = 3.0	4	C1	gives a deceleration or time
			use of $F = ma$ or $Ft = mv - mu$		A1	g.voo a dooo.oramon or mino
			(-)7000 (N)			
			mantion of $E - 1m^2$		B1	allow a mark for kinetic
			mention of $E_{K} = \frac{1}{2}mv^{2}$ all used to heat brakes/surroundings		B1	energy to 'heat'
	(-)		since both ke and d are proportional to v^2	3	B1	onergy to meat
6	(c)		d must be proportional to heat generated or to the kinetic energy	max	B1	E=md/2k gains two marks
			, , , , , , , , , , , , , , , , , , ,			
			two arrow acting downwards along each of the two ropes		B1	do not allow arrows parallel
7	(a)	(i)	two arrow acting downwards along each of the two ropes	1		to the ropes
L	I.	1		I.	<u>I</u>	
			vertical component of tension = 390 or total downward force = 780 or		C1	allow cos25°
7	(a)	(ii)	sin65° seen	3		
/	(α)	(")	$T\sin 65^\circ = 390 \text{ or } 2T\sin 65^\circ = 780$	~	C1	
			T = 430 (N)		A1	

7	(b)	(i)	(when object wholly or partially immersed in fluid) upthrust = weight of fluid displaced	1	B1	
7	(b)	(ii)	$mg = \rho Vg$ or mass calculated 2.94 x 10 ⁴ (N) must show more than 3 x 10 ⁴	2	B1 B1	allow a mark for calculating mass of cold air = 3000 kg
	•				•	
			recognition that net upward force(= 7.8×10^2) = upthrust – ($W_{balloon} + W_{hot}$ air) or = $W_{cold \ air} - (W_{balloon} + W_{hot \ air})$		B1	6860/8000 gains two marks (780 ignored)
7	(b)	(iii)	$w_{\text{hot air}} = 2.25 \text{ x} 10^4 \text{ or difference between weight of hot and cold air} = 7.5 \text{ x} $	3	B1 B1	attempt to equate upward and downward forces gains
					ы	mark
			$W_{\text{balloon}} = 6.1 \text{ x} 10^3 \text{ (N) or } 6.7 \text{ x} 10^3 \text{ (N) using } 3 \text{ x } 10^4$			
					ı	
8	(a)	(i)	axis marked with M at 900-1100 nm	1	B1	allow in line with axis on graph
			attempted use of or rearrangement of $\lambda_{max}T=0.0029$		C1	
8	(a)	(ii)	500 and 10,000 (irrespective of power of ten)	3	A1	
			both values in nm		B1	
	T	1		_		1
8	(a)	(iii)	Sun's curve always above and peak at around 500 nm (by eye)(ecf)	1	B1	
8	(b)	(i)	range of wavelengths which are transmitted/not absorbed by CO ₂ owtte	1	B1	
				<u> </u>		
8	(b)	(ii)	at 10 000 nm CO ₂ absorbs 100%/peak radiation emitted by Earth is all absorbed	1	B1	allow 'most' for 100%
	•	•	·			

		Level 0 -incorrect, inappropriate or no response examples of the sort of information or ideas that might be used to support an argument: • (surface of) Sun at high temperature (~ 6000 K) • Peak wavelength (blue) visible light • atmosphere transparent to blue/long wavelength uv • Earth atmosphere absorbs short wavelength uv and long wavelength ir • Earth at much lower temperature (~ 300 K) • Re-radiates at longer (ir) wavelength • Atmosphere opaque to this and reflects back to Earth • Earth at higher temperature than expected with no gases Greenhouse gases – enhance global warming etc.			
9	(a)	calculated cross-sectional area = $1.54 \times 10^{-6} (m^2)$ or correct substitution into resistivity equation with incorrect powers of ten correct substitution into resistivity equation with correct powers of ten $0.73 (\Omega)$	3	C1 C1 A1	1.6 x 10 ⁻³ (treating <i>r</i> as <i>A</i>) gains 2
9	(a)	(ii) Sub into I^2R irrespective of power of 10 [ecf from (a)(i)]	2	C1	
J	(a)	(II) 2.96 x 10 ⁻⁴ (W)		A1	
9	(b)	line with positive slope(linear or curve) knee and vertical line shown in first 2/3 on temperature axis resistivity falling to zero above 0 K	3	B1 B1 B1	

	1		T	1		
9	(c)		(with no resistance there can be) no power loss	1	B1	
10	(a)		smooth curve with a maximum value shown gradient fairly constant or slight increase for half time falls gradually on second half of swing	2 max	B1 B1 B1	condone non- zero at start and finish oscillations score zero
			impulse is product of force and time		B1	clear reference to impulse
10	(b)		prolonging the time (of contact) increases momentum/velocity	2	B1	being force time product needed for first mark
						needed for first mark
		I	/ F // 0.045 50/400 40 ⁻⁶		04	Lucia of O.C. and an in final and all
40	(-)	/:\	use of F=mv/t = $0.045 \times 58/180 \times 10^{-6}$		C1	use of 35 can gain first mark
10	(c)	(i)	or a= $58/180 = 3.2 \times 10^{5}$ (ignore power for first mark) 1.45×10^{4} (N)	2	A1	
			1.45 X 10 (N)		Ai	
	1		()4 45 ·· 40 ⁴ (NI)			numorically equal to o(i)
10	(c)	(ii)	$(-)1.45 \times 10^4 (N)$	1	B1	numerically equal to c(i)
			club head has inertia		C1	do not credit reference to
10	(0)	(iii)	club head only slows slightly on impact	2	A1	friction
10	(c)	(111)	club head still has kinetic energy/collision not elastic	max		treat references to sound
			increase in internal energy/'heat'/temperature of ball/club head			neutrally