General Certificate of Education (A-level) June 2013

Physics B: Physics in Context PHYB1
(Specification 2455)
Unit 1: Harmony and structure in the universe

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question	Part	Subpart	Marking guidance		Mark	Comment

			Photon			(right-hand box) TO for listing Must state name
1	(a)		Weak (nuclear)/ weak interaction / weak nuclear interaction/ weak force	B1	2	(left-hand box) TO for listing

| 1 | (b) | | | | Charge / (electric) charge |
| :---: | :---: | :---: | :---: | :---: | :---: | | TO for listing any other physical quantity |
| :--- |
| Must be word ;do not accept symbol |

| 1 | (c) | Higgs (boson) / Higgs (particle) / Higgs (boson particle)
 Accept Higg/ Higs / Hig | B1 | 1 | Not graviton
 TO for listing |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |

| | | | Mixer | B1 | Need idea of adjustment of more than one
 signal
 Not: increase / amplify (but allow amplify
 one more than the other)
 Not: adjustment of wavelength or
 frequency |
| :---: | :---: | :---: | :--- | :---: | :---: | :--- |
| (a) | | Balance (relative strengths of) signals owtte | B1 | Nombine two or more signals
 together | |

			Cone aperture or diameter more closely matched to wavelength of sound	B1	Describes matching : e.g. short wavelength to small diameter $/$ high frequency to small diameter
2	(b)		$\frac{\text { Increases half beam width / increases diffraction/ same }}{\text { value for } \theta \text { when } \lambda \sim b}$	B1	Produces sufficient diffraction / one speaker then wavelengths wouldn't diffract as much/ Ensures that (frequencies are) diffracted effectively
Full range of frequencies heard (over wider area)					

| 3 | (a) | Calcium $=40,20$ correct order
 Beta minus $=0,-1$ correct order
 Top line correct $/$ bottom line correct | B1
 B1
 B1 | 2 | MAX 2 |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- |

			Same energy released in (each) decay 3	(b)	When beta less than max there is missing energy / missing energy cannot be accounted for by recoil of (daughter) nucleus / total energy of beta and recoil nucleus not constant (appears to be violation of conservation of energy)
B1	(Must be another particle) to carry away (missing) energy	B1	If only two particles there wouldn't be a range there would be a single value		

4		Advantages: more secure / higher bandwidth/ lower attenuation/ much lighter / no crosstalk/no electromagnetic interference / safe near high voltage equipment/ long transmission lines without repeaters / more communication channels Disadvantage: new infrastructure required/ more difficult to mend or join together / can't carry electrical power, will break if bent too much	B1 B1	2	Allow more information per unit time not faster transmission allow more signals per unit time lots of copper wiring already in place as inference of new infrastructure required
5	(a)	Minimum energy to remove an electron from a (metal) surface	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	

6	(a)	(i)	(fret) S one octave higher is double frequency / half wavelength	B1B1	3	Must declare ratio to express an increase
			Halving length string doubles frequency (or halves λ) / frequency is (directly) proportional to reciprocal of length	B1		Or because $\mathrm{f}=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}$ (where T and μ are constants)

6	(a)	(ii)	Use of $\mathrm{f}=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}$ Correct rearrangement with T as subject $\mathrm{T}=(2 \mathrm{Lf})^{2} \mu$ $\mathrm{T}=66.2(\mathrm{~N})$ to any number of significant figures Answer to 3 significant figures (with working)	C1 C1 A1 B1	4	Correct substitution of f and μ including powers of ten (condone error in sub for L: allow $0.525 / 0.465 / 0.418 / 0.315 /$ 0.263) Condone power 10 error on sub for μ Either with symbols or with a correct substitution including L $66.21(\mathrm{~N})$
6	(b)	(i)	String 2 Predominant (or lowest) frequency is 110 Hz	M1 A1	2	All frequencies (or peaks or harmonics) are multiples of 110 Hz (or differences are 110 Hz) when plucked at end highest intensity at 110 Hz / first peak is at 110 Hz not first frequency

6	(b)	(ii)	Different quality / timbre / tone / richness	B1	2	Not fuller
			Some extra overtones in second sound or Differences in overtones / harmonics owtte	B1		Or relative amplitudes of overtones is different for each
			OR			
			Louder when plucked at end			Or reverse argument
						Not just higher

7			The marking scheme for this question includes an overall assessment for the quality of written communication (QWC). There are no discrete marks for the assessment of QWC but the candidate's QWC in this answer will be one of the criteria used to assign a level and award the marks for this question. Descriptor - an answer will be expected to meet most of the criteria in the level descriptor. Level 3 - good -claims supported by an appropriate range of evidence -good use of information or ideas about physics, going beyond those given in the question -argument well-structured with minimal repetition or irrelevant points -accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling	B1 B1 B1 B1 B1 B1	6	5-6: valid, detailed method - analysis will include how to minimise effect of random error -repeats 3-4: valid method lacks detail (lacks triggering / data logger / millisecond timer / how measure length) - will include analysis and repeat for reliability 1-2: inappropriate method by lack of detail or provides incorrect detail - has some analysis- has some reliability MAX 2 for non-lab method MAX 4 for resonance tube method

			Level 2 - modest -claims partly supported by evidence, -good use of information or ideas about physics given in the question but limited beyond this the argument shows some attempt at structure -the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling Level 1 - limited -valid points but not clearly linked to an argument structure -limited use of information about physics -unstructured -errors in spelling, punctuation and grammar or lack of fluency Level 0 -incorrect, inappropriate or no response Some points Appropriate apparatus listed or in diagram Measurements taken including instruments used Processing data to determine speed Reliability by repeating or reducing random error Mention of high skilled approach in method.			
8	(a)	(i)	Ultraviolet / uv	B1	1	TO for listing

8	(a)	(ii)	(In collision) atomic electron receives energy / Atomic electron rises to higher energy level Returns to lower energy level (losing energy) / relaxation occurs energy emitted as a photon of em radiation	B1 B1 B1	3	Accept excitation of the hydrogen atom Must be clear as to which electron is relaxing Maximum 1 mark from first two marks where terms used are excitation and relaxation without reference to electron
8	(a)	(iii)	Use of $c=f \lambda$ or $E=h f \quad$ (condone powers of ten error) Or (energy level $=$) $-2.2 \times 10^{-18}+\Delta E$ $f=2.5\left(\times 10^{15}\right)$ or sub into $E=h c / \lambda$ $\Delta E=1.66 \times 10^{-18}$ $\text { (-) } 5.4(3) \times 10^{-19}(\mathrm{~J}) / 5.425 \times 10^{-19}$	C1 C1 C1 A1	4	Makes f subject of formula ($f=c / \lambda$ seen $)$ Or substitutes for c and λ into a correct formula Or partial sub in $E=h f$ seen : $(E=) 6.6(3) \times 10^{-34} \times f$ Or $E=h c / \lambda$ seen Using their value for ΔE but not $2.4 \times 10^{-19}, 1.4 \times 10^{-19}, 8.8 \times 10^{-20}$ Condone powers of 10 error Condone minus sign on ΔE allow any number that rounds to 1.7×10^{-18} Condone missing minus sign

8	(b)	(i)	Quasi-stellar radio source	B1	1	
8	(b)	(ii)	Extremely luminous / high luminosity still observable even though extremely distant/ large red shift but still observable	M1 A1	2	TO on second mark where candidates states that they are very bright / brightest etc.
8	(b)	(iii)	Correct read off $\quad \lambda=135.5 \mathrm{~nm}$ $\Delta \lambda=15 / 16 / 135-120 / 136-120$ Or equivalent using λ from read off range seen Rearranges to make v subject with substitution for c : $v=(\Delta \lambda / \lambda) \times 3 \times 10^{8}$ seen (condone power 10 errors on $\Delta \lambda$ and λ) Subs into Doppler formula with correct powers of 10 And gives answer to more than 1 sf	B1 B1 B1 B1	4	Range of read-off 135.5 to 135.8 Must see v as subject In any form of formula And answer in range 3.75×10^{7} to 4.0×10^{7}

8	(b)	(iv)	Use of $v=H d$ (condone powers of ten errors) / use of speed $=$ distance \div time by their distance $\div 3 \times 10^{8}$ or rearranges to $t=d / c$ in symbols with subject	C1	4	or rearranges to $d=v / H$ in symbols with subject. ecf for v from 8 b iii
			Correct sub with v= $4 \times 10^{4} \mathrm{~km} \mathrm{~s}^{-1}$ or $\mathrm{H}=65000 /$ converts H into other acceptable form	C1		Other forms of $\mathrm{H}=2.11 \times 10^{-18}$ and $1.99 \times$ 10^{-2} (with $v=4 \times 10^{7}$) ecf for v from 8 b iii
			$\begin{array}{ll} (d=) 5.96 \times 10^{8} \text { to } 6.15 \times 10^{8}(\mathrm{Pc}) \text { seen } / \text { correct sub into } \\ v=H d \text { with acceptable variant of } \mathrm{H} / & (d=) 1.9 \times \\ 10^{25}(\mathrm{~m}) / \text { their } \mathrm{d} \times 3.26 / & \text { their } \mathrm{d} \times 3.08 \mathrm{x} \end{array}$	C1		ecf for v from 8 b iii
			1.9×10^{9} to 2.0×10^{9} (years) condone 1 sf here	A1		Answer must be in this range

9	(a)	(i)	Allow any frequency in range from 40 MHz to 1 GHz	B1	1	$4 \times 10^{7} \mathrm{~Hz}$ to $1 \times 10^{9} \mathrm{~Hz}$

9	(a)	(ii)	Limited diffraction / requires a line of sight/ signal is blocked by hills etc. (Because of its) short wavelength / high frequency	B1	B1	Treat satellites/ curvature of earth / skip zones as neutral

| | | | Appropriate diagram /
 (identifies as property of) transverse wave | B1 | Where drawn, different vibrations should
 centre on same axis and have same
 wavelength |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (b) | (i) | Accept labelling of diagram with
 transverse | | | |

			Restricting (direction) of oscillations to a single plane	B1		Allow vibration for oscillation
9	(b)	(ii)	Must be aligned vertically / Must be pointing towards transmitter (Only receive strong signal when) aerial's alignment matches polarisation of transmitted wave / when aerial not in plane of transmitted wave then there is a reduction in strength of received signal / Aerial must have (maximum) alignment with the (electric field of) carrier wave	B1 B1	2	Allow oscillation for transmitted wave Not satellite dish
10	(a)	(i)	Hadrons / hadron	B1	1	TO listing

| 10 | (a) | (ii) | $\mathrm{d}=-1 / 3(e)$ anti $s=+1 / 3(e)$ and $-1 / 3(e)+1 / 3(e)=0$
 must see summing and equal to zero, in either order when
 d and anti s are identified | B1 | When d and anti s are not identified then
 need to see:
 $-1 / 3(e)+1 / 3(e)=0$ in this order |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

10	(b)	(i)	$\begin{aligned} & (+) 1 \text { or }+1 / 3+1 / 3+1 / 3 \\ & -1 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
10	(b)	(ii)	strangeness violation allowed in (weak)decay / conserve baryon number / conserve lepton number/ conserve charge/ must have a baryon number of zero / must have a lepton number of zero/fully describes charge conservation e.g. $0=$ $-1(e)+1(e)$ or in words	B1	1	TO where incorrect listing
10	(b)	(iii)	Contains strange quark / has strangeness / doesn't decay by strong interaction because strangeness not conserved in	B1	1	Contains anti-strange quark

		decay			

