GCE 2005 January Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Physics Specification B

PHB5 Fields and their Applications

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]
NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK
 This is a mark which is independent of M and C marks.

e.c.f is used to indicate that marks can be awarded if an error has been carried forward (e.c.f. must be written on the script). This is also referred to as a transferred error' or 'consequential marking'.

Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.
c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Only one unit penalty (u.p.) in this paper unless there is a mark allocated specifically for giving a correct unit in the marking. Note that the unit is only penalised in the final answer to the question

Only one significant figure penalty (s.f.) in this paper.
Allow 2 or 3 s.f unless otherwise stated. s.f penalties include recurring figures and fractions for answers.

Marks should be awarded for correct alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

Quality of Written Communication

Before accessing marks for the Quality of Written Communication (QWC) a candidate must first score a minimum of one mark for the physics that is being communicated - this will allow access to 1 mark for QWC. If the candidate scores more marks for physics (a minimum of two or three depending upon the total mark for that part of the question) then this will allow access to 2 marks for QWC.

Good QWC: the answer is fluent/well argued with few errors in spelling, punctuation and grammar

Poor QWC: the answer lacks coherence or spelling, punctuation and grammar

PHB5 Fields and their Applications

Question 1

(a) (i)
Energy required to separate nucleons
Energy required to separate nucleons B1 B1
Difference in mass between nucleus and the sum of the individual nucleons B1
Force between nucleons either responsible forholding nucleus together orwith some extra detail such as effective rangeB1
(ii) Change in BE / nucleon is 0.8 OR BE ? Nucleon forU235 or fission product foundC1
Multiplies BE by a nucleon number somewhere C1
Answer in the range $160-200 \mathrm{MeV}$-ignore any changes to J
(iii) Attempts to find change in mass
Change in mass is $0.272 \mathrm{u} / 4.5(2) \times 10^{28} \mathrm{~kg}$ C1C1
Uses $E=m c^{2}$ C1
(b)
(i) use of $p V=n R T$
$4.06 \times 10^{-11} \mathrm{~J}$ A1
C1
correct substitution
$9.6(1) \times 10^{4} \mathrm{~mol}$ C1
$4.2(3) \times 10^{3} \mathrm{~kg}$ A1(ii) coolant is heated by fuel rods / in the coreB1
work is done on coolant by gas circulators B1
there is an increase in the internal energy of the gas (equivalent to the sum of these B1
heating done by coolant in the heat exchangers) B1
no overall change in U in one complete cycle B1heating done by coolant in ht exchangers isequivalent to heating + working done to coolantB1heating done by coolant in heat exchangers isequivalent to U gained in rest of the cycleB1
Use of physics terms is accurate, the answer is B2
fluent/well argued with few errors in spelling, punctuation and grammar
and gains at least 3 marks for physicsUse of physics terms is accurate but the answer lacksB1coherence or the spelling, punctuation and grammarare poorand gains at least 1 mark for physicsUse of physics terms is inaccurate, the answer isB0disjointed with significant errors in spelling,punctuation and grammar
(c) (i) Principle of conservation of momentum equation in words or symbolsCorrect substitution seen e.g. $2.38 \times 10^{-20}=3.81 \mathrm{x}$$10^{-20}+1.7 \times 10^{-27} v$B1

Evidence of correct manipulation seen e.g. -8.41 x 106 or $1.43 \times 10-20$
$1.7 \times 10-27$
(ii) correct use of ratios seen, involving velocities squared or use of $1 / 2 \mathrm{mv} 264 \%$

Question 2

(a)
(i)
(ii) Correct reference to attraction/repulsion or potential always negative in grav fields
(b) Use of $G m_{1} m_{2}\left(1 / r_{1}-1 / r_{2}\right)$

Correct substitution
$6.67 \times 10^{-11} \times 165 \times 5.97 \times 10^{24}\left(1 / 4.24 \times 10^{7}-1 / 8.08 \times 10^{6}\right)$
$6.58 \times 10^{9} \mathrm{~J}$ - decrease
(c) use of geostationary orbit plus reason
use of shorter orbit with reason B1
further details of either e.g. low height of shorter orbit allows closer inspection of Earth's surface or why the higher orbit is geosynchronous

Question 3
(a)
(i) Lines of equipotential parallel to the plates

B1
Field lines perpendicular to plates, evenly spaced B1
and with arrows upwards
Lack of clear labelling of at least one of the types of line loses 1 mark
Either field shown to be uniform
B1
(ii)

$$
\mathrm{KE}=8.8 \times 10^{-17} \mathrm{~J}
$$

Use of $1 / 2 m v^{2}$
Speed $=1.4 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \quad$ ecf
Momentum $=1.27 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \quad$ ecf
(b) Use of de Broglie wavelength $=h / m v$
$5.2 \times 10^{-11} \mathrm{~m}$
ecf
diffraction of electrons necessary
will work because wavelength is of same order as atomic separation (not just wavelength is too small)/argument consistent with their (a) (ii).

Question 4

(a) Force or acceleration directed towards mean position Force or acceleration proportional to displacement
B1
(b) (i) Following wave freely would be SHM (approximately)
Water waves have some other components of motion Waves vary in height, amplitude, frequency Restraining force (from cables) stops force being proportional to displacement
(ii) Power times 4 as power is proportional to square of amplitude
(iii) Use of $2 \pi f A$
Use of $v=f \lambda$
$f=0.175 \mathrm{~Hz}$
Correct manipulation to give $3.74 \mathrm{~m} \mathrm{~s}^{-1}$ to at least 3 sf
(iv) humps with gaps (similar to half wave rectification) period calculated as $5.7 \mathrm{~s} / T=1 / f$ used $T=5.7 \mathrm{~s}$ marked on graph
(c) use of $E=$ stress /strain area $=1.96 \times 10^{-3} \mathrm{~m}$ or $\pi\left(2.5 \times 10^{-3}\right)^{2}$ correct substitution
$1.05 \times 10^{-3} \mathrm{~m}$

B1 B1

B1 B1

2

1

4

3
C1
C1
C1
A1
4
Total 16 Marks

Question 5

(a)
(b)
(i)
clockwise
(ii) Brushes change contact to other half of split ring B1
(ii) Brushes change contact to other half of split ring B1 force) in one wire, or maintenance of direction on one side of rotor
(c)
(i) Maximum torque shown as \mathbf{H}
(i) Use of $F=B I l$ condone lack of n

Full correct substitution including n $0.71(4) \mathrm{N}$
(ii)
torque $=$ force x separation of forces
$0.027(1) \mathrm{Nm}$ C1 A1 B1

B1 3

2
1

2

(ii) Force stays constant
(perpendicular) distance between forces reduces as rotor turns

$$
\begin{array}{ll}
\text { each variation takes half of a rotation } & \\
\text { explanation of discontinuity } & \text { B1 } \\
\text { explains why it is always positive } & \text { B1 } \\
\text { explains why it's zero when coil is vertical } & \text { B1 } \\
\text { explains why it's max when coil is horizontal } &
\end{array}
$$

Question 6

(a) Emf induced in rotor due to changing magnetic field Magnitude of induced emf is (proportional) to the rate of change of flux linkage
Or reference to at least 2 of the individual factors
(b)
(i) Correct method for gradient at 0.8 ms Rate of change of $B=19 \mathrm{~T} \mathrm{~s}^{-1}$
(ii) $E=$ area of coil x rate of change of B $0.053(0.0527) \mathrm{V}$
(iii) $R=\rho l / A$

Length of conductor $=0.22(2) \mathrm{m}$ Use of $I=V / R$ 8.2(2) A
(c) DC motors compared with synchronous:
work done against friction in brushes
Wear due to friction or arcing
Power to weight ratio
Reduced noise due to lighter weight B1
Faster
Cheaper through fuel efficiency or because of weight reduction

max 3

Regenerative braking
With regenerative braking - KE of train not wasted
...turned into (useful) electrical energy
without - KE turned into heat / internal energy max 2
Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics
Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics
Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar

Total 12 Marks

C1 C1

B1

B1 B1

2

2

2

4

8
Total 18 Marks

Question 7

(a) (i) Change in direction is a change of velocity/
acceleration

M1
Acceleration requires force A1
2
(ii) Horizontal component of normal reaction of carriage or force of rail on wheel flange shown with correct position \& direction
(i) Use of $F=m v^{2} / r$

Nozomi : $6.3 \times 10^{4} \mathrm{~N}$ or correct attempt to determine the ratio of the two forces Hikari: $9.6 \times 10^{4} \mathrm{~N}$ or ratio is 0.66
Similar error loses one mark
(ii) Acceleration is similar for both

Suitable comment such as reference to passenger comfort/less likely to topple/won't have to tilt as much

C1
B1
B1

C1

A1
3
C1 A1

2
Total 9 Marks

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

