

GCE

Physics B

Unit PHB4

NOTES

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.
e.c.f. is used to indicate that marks can be awarded if an error has been carried forward. This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.
c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Only one unit penalty (u.p.) in Section A and one unit penalty in Section B of this paper.
Only one significant figure penalty (s.f.) in Section \mathbf{A} and one significant figure penalty in Section B of this paper. Allow 2 or 3 s.f. unless otherwise stated.
Significant figure penalties include recurring figures and fractions for answers

Question 1

(a) Max to zero to max with zero at 0 displacement and correct amplitude correct shape drawn with reasonable attempt to keep total energy constant, crossing at $1 \times 10^{-2} \mathrm{~J}$
(b) (i) 0.044 m
(ii) $\quad x=0.044 \cos 2 \pi 3.5 t(0.044 \cos 22 \mathrm{t})$ or $x=0.044 \sin 2 \pi 3.5 t$ etc ecf for A
(iii) $\quad a_{\max }=(2 \pi 3.5)^{2} 0.044$
21 (21.3) $\mathrm{m} \mathrm{s}^{-2} \quad$ ecf for A and incorrect $2 \pi f$ from (ii)
A1

Question 2

(a) The force per unit area B1
at which the material extends considerably/a lot/plastically/
B1
or strain increases considerably etc
NOT doesn't return to its original shape/permanently deformed for no (or a small) increase in) force/stress

B1
(b) (i) strain $=8.4 \times 10^{-4}\left(1.3 \times 10^{-3} / 1.55\right.$ seen) (allow if in $\left.E=F L / A \Delta L\right)$

B1
or area of cross section $=2 . .54 \times 10^{-6}$ or $\pi\left(0.9 \times 10^{-3}\right)^{2}$
stress $=E \mathrm{x}$ strain (explicit or numerically) and stress $=F / A$ or $E=F L / A \Delta L$
force $=440-450 \mathrm{~N}$ (cao)
C1
force $=440-450 \mathrm{~N}$ (cao) Al
A1 3
(ii) Energy $=1 / 2 F \Delta l$ or $1 / 2$ stress x strain x volume C1
0.29 J ecf for F from (b)(i) A1

Question 3

(a) the frequency needed to liberate an electron (electrons) from the surface of a material
or
minimum frequency to cause photoelectric effect
the minimum frequency of the radiation/light/photon needed to liberate an electron (electrons) from (the surface of) a material or from the surface
(b) the rate increases or more electrons per second
there are more photons striking the surface each second
no change in rate if frequency is below threshold frequency -Allow 1
(c) (i) Calculation using $h c / E$ for (4.7 or 1.5 or 3.2$) \times 10^{-19} \mathrm{~J}$
use of 1.5 leads to 1.32×10^{-6}; use of 3.2 leads to 6.2×10^{-7} $4.2 \times 10^{-7} \mathrm{~m}$
(ii) use of $1.5 \times 10^{-19} \mathrm{~J}$
$p=\sqrt{ }(2 m E)$ and $\lambda=h / p$ or $E=1 / 2 m v^{2}$ and $\lambda=h / m v$
C1
correct answer for their energy
$1.26 \times 10^{-9} \mathrm{~m}$ for $1.5 \times 10^{-19} \mathrm{~J}$
$1.2 \times 10^{-9} \mathrm{~m}$ for $1.7 \times 10^{-19} \mathrm{~J}$
$0.86 \times 10^{-9} \mathrm{~m}$ for $3.2 \times 10^{-19} \mathrm{~J}$
$0.71 \times 10^{-9} \mathrm{~m}$ for $4.7 \times 10^{-19} \mathrm{~J}$

Question 4

(a) Time constant $=1.5 \mathrm{~ms}$ (allow 2.2×680 condoning powers of 10 ; may be seen in equation below)
$2.2=5.0 \mathrm{e}^{-t /(\text { their timeconstant })}$ or alternative using Q
1.2 or 1.23 ms (cao)
(b) (i) Calculation on one energy correctly (2.75(2.8) $\times 10^{-5} \mathrm{~J}$ or $\left.5.3 \times 10^{-6} \mathrm{~J}\right)$
(condone any suggestion that their one energy is the energy loss)
2.1 to $2.3 \times 10^{-5} \mathrm{~J}$
e.c.f. for same incorrect power of 10 as in (a)
(ii) in the resistor

Internal energy of the resistor
or (eventually) internal energy of the surroundings)
(but not heat in the resistor etc)
(c) (i) Quotes or uses correct formula (1/C=1/C1+1/C2)
$1.32 \mu \mathrm{~F}$
(ii) The change would not have the desired effect
because
The capacitor would discharge quicker so in the longer contact time the final p.d.would be lower or too low to measure accurately
or
To have a similar final voltage a larger time constant is needed; the suggested adjustment gives a lower time constant

B1
B1

C1
A1

Question 5

(a)
$F t=\Delta(m v)$
or $F=m a$ and $a=(v-u) / \mathrm{t}$
3800 N
(b) work done = change in KE
or
appropriate equation of motion for s
or
work done $=F s$
Calculation of one KE correctly
or s calculated correctly (50 m)
$1.9 \times 10^{5} \mathrm{~J}$ (condone N m) e.c.f. for F
power $=\{$ force from (a) $\} \mathrm{x}$ any velocity
or
power $=$ change in $\mathrm{KE} /$ time
$76 \mathrm{~kW}\left(\mathrm{~kJ} \mathrm{~s}^{-1}\right)$
ecf from (b) or ecf from (a) for use of $P=F v$ (their $F \times 20$)
(d) (i) (their (b)) $=4.8$ (or 1.2) $\times 510 \times \Delta \theta$ (allow use of 1.2 instead of 4.8 for this mark)
appreciation of 4 discs evident in the calculation
$77.6(78) \mathrm{K}\left(\right.$ or $\left.{ }^{\circ} \mathrm{C}\right)$ or their (b)/2450
(ii) temperature rise will be lower
there will be air resistance
some energy becomes internal energy of the air
OR
other components of the braking system (including answers involving friction of tyres with road)
these will use some of the energy to increase temperature
OR
heat/energy transfer to the surroundings
since surroundings at lower temperature or
temperature or internal energy of surroundings rises

C1

C1
A1
C1

A1

B1 B1 B1
C1
A1
2

3

2 C1

A1

Question 6

(a) (i) 3.8×10^{-23} B1
Ns or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$ (nb this is an extra unit penalty) B1 2
(ii) $\quad F=m v^{2} / r$ or $F=m r \omega^{2}$ C1
$3.5-3.6 \times 10^{-14} \mathrm{~N}$ A1
(iii) Shown clearly toward the centre of the circular path B1
B1(b) In an elastic collision kinetic energy in conserved or no change in KE)
total KE is constant or KE of system is constant
reasonable sketch of energy levels (at least 4 levels), -13.6 eV as the lowest
B1(b) In an elastic collision kinetic energy in conserved or no change in KE)
total KE is constant or KE of system is constant
reasonable sketch of energy levels (at least 4 levels), -13.6 eV as the lowest
B1(b) In an elastic collision kinetic energy in conserved or no change in KE)
total KE is constant or KE of system is constant
reasonable sketch of energy levels (at least 4 levels), -13.6 eV as the lowest
in ionisation the electron removes an electron from the atom or from theto emit lightan electron is raised to one of the intermediate levels or to a higher level
or the atom is excited
light is emitted when the electron returns to a lower level (nb not de-excites)
a photon is emitted B1
light is emitted when the electron falls into the $n=\mathbf{2}$ level B1
ground state by providing 13.6 eV of energythe use of physics terms is accurate, the answer is fluent/well argued with few2
errors in spelling, punctuation and grammar.must gain at least $\mathbf{3 / 6}$ for physicsthe use of physics terms is accurate, the answer lacks coherence or thespelling, punctuation and grammar are poor.must gain at least $\mathbf{2 / 6}$ for physicsthe use of physics terms is inaccurate, the answer is disjointed with0significant errors is spelling, punctuation and grammar are poor2B1B1B12
1

Question 7

(a)

(i) \quad| $p V=n R T$ |
| :--- |
| $0.078(3)(\mathrm{mol})$ |

(ii) $7.2 \times 10^{-3}(\mathrm{~mol})$
(iii) 1.6 to $1.7 \times 10^{5} \mathrm{~Pa}$
(allow ecf from (i) and (ii) $\left[\{(\mathrm{i})+(\mathrm{ii})\} /(\mathrm{i}) \times 1.5 \times 10^{5} \mathrm{~Pa}\right]$
(b) there is pressure because :
molecules move, or have KE, or have momentum
when molecules collide with the walls there is a change in momentum of the
molecules (this mark may imply the first
a force is exerted on the molecules to change their momentum or $F t=\Delta m v$
(an equal and opposite) force is exerted on the wall during collision
or molecules hit/collide with the wall and cause a force
pressure $=$ force/area
when more air is pushed into the tube pressure/force is greater because more molecules collide with the wall /higher chance of collision with the wall there is a greater change in momentum each second
the use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar.
must gain at least $3 / 5$ for physics
the use of physics terms is accurate, the answer lacks coherence or the spelling, punctuation and grammar are poor.
must gain at least $\mathbf{1 / 5}$ for physics and give further argument on which to judge QoWC
the use of physics terms is inaccurate, the answer is disjointed with significant errors is spelling, punctuation and grammar are poor
(c) (i) knows that for isothermal change $p V=$ constant uses data correctly from graph to show that $p V$ is not constant
(ii) any clear attempt to determine the area under the line (25 to 30 squares seen)
total number of squares $=132+27=159$ (allow $150-170$)
energy per square $=0.025 \mathrm{~J}$
or
clear attempt to use the trapezium rule $\quad \mathrm{C} 1$
correct use of trapezium rule to find area
evidence that correct use of scales
3.8 to 4.2 J (cao)
or
Mean pressure $=1.15$ to $1.25 \times 10^{5} \mathrm{~Pa} \quad \mathrm{~B} 1$
Volume change $=0.33 \times 10^{-4} \mathrm{~m}^{3} \quad \mathrm{~B} 1$
Work done $=($ mean $)$ pressure x volume change $\quad \mathrm{B} 1$
3.8 to 4.1 J

B1
B1

B1 B1

A1
B1
C1
A1
B1

B1
1

3
max

B1
B1

