

Mark scheme January 2002

GCE

Physics B

Unit PHB4

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if *some* working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.

e.c.f. is used to indicate that marks can be awarded if an error has been carried forward. This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Only **one** unit penalty (u.p.) in **Section A** and **one** unit penalty in **Section B** of this paper.

Only **one** significant figure penalty (s.f.) in **Section A** and **one** significant figure penalty in **Section B** of this paper. Allow 2 or 3 s.f. unless otherwise stated.

Significant figure penalties include recurring figures and fractions for answers

(a)		Max to zero to max with zero at 0 displacement and correct amplitude correct shape drawn with reasonable attempt to keep total energy constant, crossing at $1 \times 10^{-2} J$	M1 A1	2
(b)	(i)	0.044 m	B1	1
	(ii)	$x = 0.044 \cos 2\pi 3.5t$ (0.044 cos 22t) or $x = 0.044 \sin 2\pi 3.5t$ etc ecf for A	B1	1
	(iii)	$a_{\text{max}} = (2 \pi 3.5)^2 0.044$ 21 (21.3) m s ⁻² ecf for A and incorrect $2\pi f$ from (ii) (0.042 gives 20.3; 0.04 gives 19.4)	C1 A1	2

(a)		The force per unit area at which the material extends considerably/a lot/plastically/ or strain increases considerably etc NOT doesn't return to its original shape/permanently deformed	B1 B1	
		for no (or a small) increase in) force/stress	B1	3
(b)	(i)	strain = 8.4 x 10^{-4} (1.3x 10^{-3} /1.55 seen) (allow if in $E = FL/A\Delta L$) or area of cross section = 254 x 10^{-6} or π (0.9 x 10^{-3}) ²	B1	
		stress = E x strain (explicit or numerically) and stress = F/A or $E = FL/A\Delta L$	C1	
		force = $440 - 450 \text{ N(cao)}$	A 1	3

(ii)	Energy = $\frac{1}{2} F \Delta l$ or $\frac{1}{2}$ stress x strain x volume	C1	
	$0.29 \mathrm{J}$ ecf for F from (b)(i)	A1	2
			8

(a)		the frequency needed to liberate an electron (electrons) from the surface of a material	C1	
		or minimum frequency to cause photoelectric effect the minimum frequency of the radiation/light/photon needed to liberate an electron (electrons) from (the surface of) a material or from the surface	A1	2
(b)		the rate increases or more electrons per second there are more photons striking the surface each second no change in rate if frequency is below threshold frequency -Allow 1	M1 A1	2
(c)	(i)	Calculation using hc/E for (4.7 or 1.5 or 3.2)x 10^{-19} J use of 1.5 leads to 1.32 x 10^{-6} ; use of 3.2 leads to 6.2 x 10^{-7}	C1	
		$4.2 \times 10^{-7} \text{ m}$	A 1	2
	(ii)	use of 1.5 x 10^{-19} J $p = \sqrt{(2mE)}$ and $\lambda = h/p$ or $E = \frac{1}{2} mv^2$ and $\lambda = h/mv$ correct answer for their energy	B1 C1	
		1.26 x 10 ⁻⁹ m for 1.5 x 10 ⁻¹⁹ J 1.2 x 10 ⁻⁹ m for 1.7 x 10 ⁻¹⁹ J 0.86 x 10 ⁻⁹ m for 3.2 x 10 ⁻¹⁹ J	A1	3
		$0.71 \times 10^{-9} \text{ m for } 4.7 \times 10^{-19} \text{ J}$		9
Quest	tion 4			
(-)		Time constant = 1.5 mg (allow 2.2 m (80 and anima normal of 10 mg b)	C1	
(a)		Time constant = 1.5 ms (allow 2.2×680 condoning powers of 10; may be seen in equation below)	C1	
		$2.2 = 5.0 \mathrm{e}^{-t/(\mathrm{their time constant})}$ or alternative using Q 1.2 or 1.23 ms (cao)	C1 A1	3
(b)	(i)	Calculation on one energy correctly $(2.75(2.8) \times 10^{-5} \text{ J or } 5.3 \times 10^{-6} \text{ J})$ (condone any suggestion that their one energy is the energy loss)	C1	
		2.1 to 2.3 x 10^{-5} J e.c.f. for same incorrect power of 10 as in (a)	A1	2
	(ii)	in the resistor	B1	
		Internal energy of the resistor or (eventually) internal energy of the surroundings) (but not heat in the resistor etc)	B1	2
(c)	(i)	Quotes or uses correct formula $(1/C = 1/C_1 + 1/C_2)$ 1.32 µF	C1 A1	2
	(ii)	The change would not have the desired effect	M0	
	()	because The capacitor would discharge quicker so in the longer contact time the final	A1	
		p.d.would be lower or too low to measure accurately or		1
		To have a similar final voltage a larger time constant is needed; the suggested adjustment gives a lower time constant		_
				10

(a)		$Ft = \Delta(mv)$	C1	
		or $F = ma$ and $a = (v-u)/t$		_
		3800 N	A 1	2
(b)		work done = change in KE	C1	
		or appropriate equation of motion for <i>s</i>		
		or		
		work done = Fs	C1	
		Calculation of one KE correctly or <i>s</i> calculated correctly (50 m)	CI	
		1.9×10^5 J (condone N m) e.c.f. for F	A 1	3
		1.5 X TV V (condone TV III) c.c.i. 161 I	711	J
(c)		<pre>power = {force from (a)} x any velocity or</pre>	C1	
		power = change in KE/time		
		76 kW (kJ s ⁻¹)	A 1	2
		ecf from (b) or ecf from (a) for use of $P = Fv$ (their $F \times 20$)		
(d)	(i)	(their (b)) = 4.8 (or 1.2) x 510 x $\Delta\theta$ (allow use of 1.2 instead of 4.8 for this mark)	C1	
		appreciation of 4 discs evident in the calculation	C1	
		77.6 (78) K (or °C) or their (b)/2450	A 1	3
	(ii)	temperature rise will be lower	B1	
		there will be air resistance		
		some energy becomes internal energy of the air OR	B1	
		other components of the braking system (including answers involving friction of tyres with road)		
		these will use some of the energy to increase temperature	B1	
		OR heat/energy transfer to the surroundings		2
		since surroundings at lower temperature or	B1	4
		temperature or internal energy of surroundings rises	וע	
		temperature of internal energy of suffoundings rises		12

(a)	(i)	3.8 x 10 ⁻²³ N s or kg m s ⁻¹ (nb this is an extra unit penalty)	B1 B1	2
		(no time to the time to the time penalty)		_
	(ii)	$F = mv^2/r \text{ or } F = mr\omega^2$	C1	
	, ,	$3.5-3.6 \times 10^{-14} \text{ N}$	A 1	2
	(iii)	Shown clearly toward the centre of the circular path	B1	1
(b)		In an elastic collision kinetic energy in conserved or no change in KE)	B1	
. ,		total KE is constant or KE of system is constant	B1	2
		reasonable sketch of energy levels (at least 4 levels), -13.6 eV as the lowest	B1	
		in ionisation the electron removes an electron from the atom or from the ground state by providing 13.6 eV of energy	B1	2
		to emit light	D.1	
		an electron is raised to one of the intermediate levels or to a higher level or the atom is excited	B1	
		light is emitted when the electron returns to a lower level (nb not de-excites)	B1	
		a photon is emitted	B1	
		light is emitted when the electron falls into the $n = 2$ level	B1	max 2
		the use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar.	2	
		must gain at least 3/6 for physics	1	
		the use of physics terms is accurate, the answer lacks coherence or the spelling, punctuation and grammar are poor. must gain at least 2/6 for physics	1	
		the use of physics terms is inaccurate, the answer is disjointed with significant errors is spelling, punctuation and grammar are poor	0	
		2-0 strong is opening, points and grammar and poor		max
				2 13

(a)	(i)	pV = nRT 0.078(3) (mol)		C1 A1	2
	(ii)	$7.2 \times 10^{-3} \text{ (mol)}$		B1	1
	(iii)	1.6 to 1.7 x 10^5 Pa (allow ecf from (i) and (ii) [{(i) + (ii)}/(i) x 1.5 x 10^5 Pa]		B1	1
(b)		there is pressure because: molecules move, or have KE, or have momentum when molecules collide with the walls there is a change in momentum of molecules (this mark may imply the first a force is exerted on the molecules to change their momentum or $Ft = \Delta m$ (an equal and opposite) force is exerted on the wall during collision or molecules hit/collide with the wall and cause a force		B1 B1 B1	
		pressure = force/area		B1	3 max
		when more air is pushed into the tube pressure/force is greater because more molecules collide with the wall /higher chance of collision with the there is a greater change in momentum each second	wall	B1 B1	2
		the use of physics terms is accurate, the answer is fluent/well argued with errors in spelling, punctuation and grammar. must gain at least 3/5 for physics	ı few	2	
		the use of physics terms is accurate, the answer lacks coherence or the spelling, punctuation and grammar are poor. must gain at least 1/5 for physics and give further argument on which judge QoWC	to	1	
		the use of physics terms is inaccurate, the answer is disjointed with significant errors is spelling, punctuation and grammar are poor		0	max 2
(c)	(i)	knows that for isothermal change $pV = constant$ uses data correctly from graph to show that pV is not constant		C1 A1	2
	(ii)	any clear attempt to determine the area under the line		C1	
		(25 to 30 squares seen) total number of squares = $132 + 27 = 159$ (allow $150 - 170$) energy per square = 0.025 J		A1 B1 B1	4
		clear attempt to use the trapezium rule correct use of trapezium rule to find area evidence that correct use of scales	C1 A1 B1		
		3.8 to 4.2 J (cao)			
		Mean pressure = 1.15 to 1.25×10^5 Pa Volume change = 0.33×10^{-4} m ³ Work done = (mean) pressure x volume change 3.8 to 4.1 J	B1 B1 B1 B1		17