

ALLIANCE

Mark scheme June 2003

GCE

Physics **B**

Unit PHB4

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

PHB4

Questio	n 1		
(a)(i)	Unchanged	B1	
(ii)	¹ / ₂ OWTTE	B 1	
(iii)	$T = 2\pi \sqrt{(M/k)}$ $T^{2} = 4\pi^{2} \times M/k \text{ (square and re-arrange)}$	B1 B1	
(iv)	T = 1/0.91 [= 1.1 s] 1.1 ² × 190000 /4 π^2 So m_{platform} = (cand ans for M –5300) leading to correctly evaluated answer	C1 A1 B1	
(b)	v shape correct[cos graph]or v shape inverted[-cos graph]	B2 B1	
	k.e. always +ve k.e. freq doubles k.e. shape acceptable	M1 M1 A1	
(c)	max 4 from: mention of forced oscillation platform frequency always matches lorry's frequency mention of resonance small amplitude when well away from resonant frequency large amplitude at resonance [do not infer small amp point from this] resonant freq close to 0.91 Hz	Β4	16
Questio	n 2		
(a)	$35 \times 10^{3} \times 4200 \times 24$ = 3.53 × 10 ⁹ W	C1 A1	
(b)	$3.53 \times 10^{9}/2.4 \times 10^{6}$ [ecf; ans to (a)/ 2.4 × 10 ⁶] = 1.47 × 10 ³ kg s ⁻¹ [allow kg]	C1 A1	
(c)	800 MW/sensible power = 0.8/(3.53 + 0.8) = 0.185 or 18.5 % [ecf from ai]	C1 A1	6

Question 3

(a)(i)	15 rev/s = 30π rad/s or $v = 51/52$ m s ⁻¹ [could appear in subst] $F = mw^2r$ [or mv^2/r & $v = \omega r$] appropriate sub leading to 7.33 kN [2+sf evaluation mandatory]	B1 B1 B1
(ii)	to centre of rotor OWTTE	B 1
(iii)	stress = F/A correct substitution from ai	B1 B1
(iv)	$0.55 \times 2.09 \times 10^{7}/6 \times 10^{10} \qquad \text{[or } \epsilon = 3.3 \times 10^{-4} \text{]}$ = 0.192 mm	C1 A1
(v)	$\frac{1}{2} \ge 7.32 \ge 10^3 \ge 1.92 \ge 10^{-4}$ [ecf] = 0.702 J	C1 A1
(b)(i)	volume pushed down [per second] = Av [mass = $\rho \times$ volume] Change of momentum [per second] = mass pushed down per second $\times v$	B1 B1
(ii)	Upward force = 900 N OWTTE [penalise use of 900g]	C1
	OR area swept out by blades = $\pi \times 0.55^{\circ}$	C1

$900 = (0.55)^2 \pi 1.3 v^2$	C1	
$= 27 \text{ m s}^{-1}$	A1	15

Question 4

(a)(i)	= $0.35 \times 0.45 \times 6 \times 8.9 \times 10^{-12} / 3 \times 10^{-3}$ = $2.8 \times 10^{-9} \text{ F}$	C1 A1
(ii)	$12/10 [\times 10^3]$ = 1.2 mA	C1 A1
(iii)	$10^4 \text{ x } 2.8 \text{ x } 10^{-9} = 2.8 \text{ x } 10^{-5} \text{ s}$	B1
(iv)	correct curvature, goes thru I_0 , not asymptotic to I axis value about 1/3 after 1 time constant [between 0.3 and 0.4] evidence of attempt to make ratios same at equal time intervals	M1 A1 B1
(v)	capacitance increases justification for C change (expect $C \propto 1/d$; inversely prop, or equ ⁿ) current increases justification for current increase	B1 B1 B1 B1

	Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics	B2	
	Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics	B1	
	Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar	B0	14
Question	15		
(a)	Use of 4×10^{14} Use of $c = f\lambda$ 7.5 x 10^{-7} m	C1 C1 A1	
(b)	line parallel to first intersecting x-axis at twice threshold freq	B1	
(i)	gradient is h so unchanged	B1	
(ii)	intersection with <i>x</i> -axis is double because $hf = \varphi$ at zero ke for e^{-1}	B1	6
Question	6		
(a)	$1.8/1.81 \times 10^{-11} \text{ m}$	B1	
(b)	circular bands of light on diagram diffraction/interference effect or electron $\lambda \sim \text{atomic spacing in}$	B1	
	graphite	B1	
(c)	state correct and appropriate particulate aspect quote evidence <i>from this expt</i> that shows electrons possess aspect	B1 B1	5
	e.g. electrons carry momentum/kinetic energy to screen excite other electrons in atoms/cause emission of energy/light or electrons carry charge can be accelerated by electric field/p.d. etc		
Question	17		
(a)(i)	use of pV = constant or $p_1V_1 = p_2V_2$ $p = 99 \times 3.50/4.15$ = 83.5 kPa	C1 C1 A1	

(ii)	change occurs quickly so cannot remain in thermal equilibrium or no time for heat to be lost; gas does work as it expands/adiabatic	B1	
(b)	99 [× 10^3]× $3.5 \times 10^{-4}/8.31 \times 291$ = 1.4(3) x 10^{-2} moles	C1 A1	
(c)	molecules/particles have momentum momentum change at wall momentum change at wall/callisions at wall leads to forme	B1 B1	
	[allow impulse arguments]	B1	
	less air so fewer molecules	B1	
	so change in momentum per second /rate of change is less [<i>or</i> per unit time]	B1	
	use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics	B2	
	Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics	B1	
	Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar	B0	13