

Leave blank

General Certificate of Education June 2002 Advanced Subsidiary Examination

PHYSICS (SPECIFICATION B) Unit 1

PHB1

Friday 31 May 2002 Afternoon Session

In addition to this paper you will require:

- a calculator;
- a ruler.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in **Section A** and **Section B** in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want marked.
- All working must be shown, otherwise you may lose marks.
- A *Formulae Sheet* is provided on page 3. Detach this perforated page at the start of the examination.

Information

- The maximum mark for this paper is 75.
- Mark allocations are shown in brackets.
- Marks are awarded for units in addition to correct numerical answers, and for the use of appropriate numbers of significant figures.
- You are expected to use a calculator where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

Advice

• You are advised to spend about 30 minutes on **Section A** and about 1 hour on **Section B**.

For Examiner's Use							
Number	Mark	Numbe	r	Mark			
Α							
6							
7							
8							
9							
10							
Total (Column	1)	\rightarrow					
Total (Column	2)	\rightarrow					
TOTAL							
Examine	r's Initials						

SECTION A

Answer all questions in the spaces provided.

Total for this section: 25 marks

1	(a)	State the difference between vector and scalar quantities.
		(1 mar
	(b)	State one example of a vector quantity (other than force) and one example of a scalar quantity.
		Vector quantity(1 mar
		Scalar quantity(1 mar
	(c)	A 6.0N force and a 4.0N force act on a body of mass 7.0kg at the same time. Calculate the maximum and minimum accelerations that can be experienced by the body.
		Maximum accelerationMinimum acceleration(3 mark
2	A ve	ehicle accelerates uniformly from a speed of $4.0 \mathrm{ms}^{-1}$ to a speed of $12 \mathrm{ms}^{-1}$ in $6.0 \mathrm{s}$.
	(a)	Calculate the vehicle's acceleration.
		Acceleration(2 mark

Detach this perforated page at the start of the examination.

Foundation Physics Mechanics Formulae

Waves and Nuclear Physics Formulae

$$moment of force = Fd$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$s = \frac{1}{2}(u+v)t$$

for a spring, F = k l

energy stored in a spring
$$= \frac{1}{2}F$$
 $l = \frac{1}{2}k(l)^2$

$$T = \frac{1}{f}$$

Foundation Physics Electricity Formulae

$$I = nAvq$$

terminal p.d. = E - Ir

in series circuit, $R = R_1 + R_2 + R_3 + \dots$

in parallel circuit, $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

output voltage across $R_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times \text{input voltage}$

fringe spacing = $\frac{\lambda D}{d}$

single slit diffraction minimum $\sin \theta = \frac{\lambda}{h}$

diffraction grating $n \lambda = d \sin \theta$

Doppler shift
$$\frac{f}{f} = \frac{v}{c}$$
 for $v << c$

Hubble law v = Hd

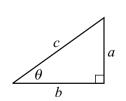
radioactive decay $A = \lambda N$

Properties of Quarks

Type of quark	Charge	Baryon number					
up u	$+\frac{2}{3}e$	$+\frac{1}{3}$					
down d	$-\frac{1}{3}e$	$+\frac{1}{3}$					
ū	$-\frac{2}{3}e$	$-\frac{1}{3}$					
$\overline{\mathbf{d}}$	$+\frac{1}{3}e$	$-\frac{1}{3}$					

Lepton Numbers

Douticle	Lepton number L								
Particle	L_e	L_{μ}	$L_{ au}$						
e-	1								
e^-	-1								
v_e	1								
$egin{array}{c} v_e \ \overline{v}_e \ \mu^- \ \mu^+ \end{array}$	-1								
μ-		1							
μ+		-1							
$rac{v_{\mu}}{\overline{v}_{\mu}}$		1							
$\overline{v}_{\!\mu}$		-1							
τ-			1						
$ au^+$			-1						
$v_{ au}$			1						
$\overline{v}_{ au}$			-1						


Geometrical and Trigonometrical Relationships

circumference of circle = 2 r

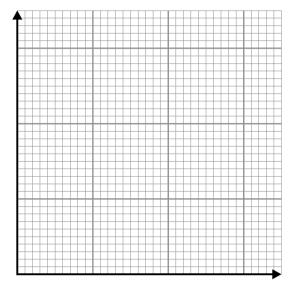
area of a circle =
$$r^2$$

surface area of sphere =
$$4 r^2$$

volume of sphere
$$=\frac{4}{3}$$
 r^3

$$\sin \theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$


$$\tan \theta = \frac{a}{b}$$

$$c^2 = a^2 + b^2$$

NO QUESTIONS APPEAR ON THIS PAGE

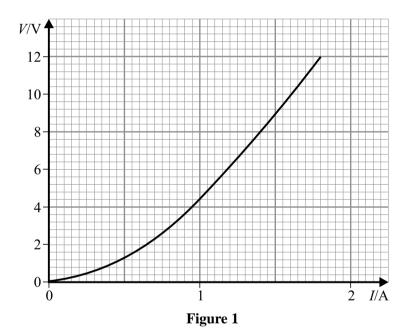
DO NOT WRITE ON THIS PAGE

(b) On the axes below, draw a graph of speed against time for the vehicle covering the 6.0 s period in which it accelerates.

(2 marks)

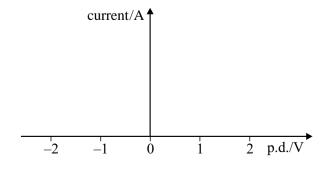
(c) Calculate the distance travelled by the vehicle during its 6.0 s period of acceleration.

Distance	
	(2 marks)


- 3 A small hydroelectric power station uses water which falls through a height of 4.8 m.
 - (a) Calculate the change in potential energy of a $1.0\,\mathrm{kg}$ mass of water falling through a vertical height of $4.8\,\mathrm{m}$.

gravitational field strength, $g = 9.8 \,\mathrm{N \, kg}^{-1}$

Change in potential energy.....(2 marks)


pelectric power stations for electricity	of hydroelectric	usefulness	hat affect the	State two factors t production.	(b)
(2 marks)					

4 (a) **Figure 1** shows a graph of *V* against *I* for a filament lamp. Calculate the maximum resistance of the lamp over the range shown by the graph.

Resistance.....(3 marks)

(b) Sketch, on the axes below, a graph of current against potential difference for a diode.

(2 marks)

5	(a)	(i) Name an electrical component that could be used as a position sensor.
		(1 mark)
		(ii) Name an electrical component that could be used as a temperature sensor.
	(b)	State two situations in which the measurement of a quantity would have to be done by remote sensing. For each example state a reason why remote sensing is essential.
		First situation
		Reason
		Second situation
		Reason

TURN OVER FOR THE NEXT QUESTION

SECTION B

Answer all questions in the spaces provided.

		Total for this question: 14 marks
(a)	(i)	State how to calculate the moment of a force about a point.
		(2 marks)
	(ii)	State the principle of moments.
		(2 marks)

(b) **Figure 2** shows a trailer attached to the towbar of a stationary car. The weight of the trailer is 1800 N and is shown acting through its centre of gravity.

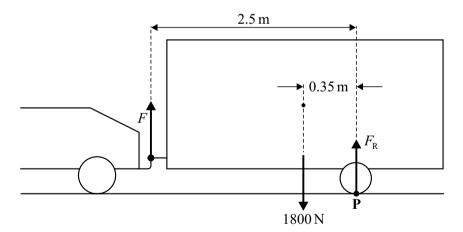


Figure 2

(i) Calculate the force, F , exerted by the towbar on the trailer.
F(3 marks
(ii) $F_{\rm R}$ is the normal reaction of the road on both of the trailer's wheels. Calculate $F_{\rm R}$.
(ii) 1 _R is the normal reaction of the four of the trailer's wheels. Calculate 1 _R .
$F_{_{ m R}}$
$F_{\rm R}$ (2 marks
(c) The moment exerted by the trailer on the towbar will be different when the car is moving quickly forward at a constant speed. Without performing any further calculations, state and explain how the moment will differ. You should consider the moments acting about the point P or
(c) The moment exerted by the trailer on the towbar will be different when the car is moving quickly forward at a constant speed. Without performing any further calculations, state and explain how the moment will differ. You should consider the moments acting about the point P or
(c) The moment exerted by the trailer on the towbar will be different when the car is moving quickly forward at a constant speed. Without performing any further calculations, state and explain how the moment will differ. You should consider the moments acting about the point P or
(c) The moment exerted by the trailer on the towbar will be different when the car is moving quickly forward at a constant speed. Without performing any further calculations, state and explain how the moment will differ. You should consider the moments acting about the point P or
(c) The moment exerted by the trailer on the towbar will be different when the car is moving quickly forward at a constant speed. Without performing any further calculations, state and explain how the moment will differ. You should consider the moments acting about the point P or
(c) The moment exerted by the trailer on the towbar will be different when the car is moving quickly forward at a constant speed. Without performing any further calculations, state and explain how the moment will differ. You should consider the moments acting about the point P or
(c) The moment exerted by the trailer on the towbar will be different when the car is moving quickly forward at a constant speed. Without performing any further calculations, state and explain how the moment will differ. You should consider the moments acting about the point P or

Total for this question: 12 marks

A rugby ball is kicked towards the goal posts shown in **Figure 3** from a position directly in front of the posts. The ball passes over the cross-bar and between the posts.

10

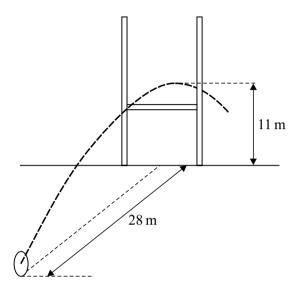


Figure 3

- (a) The ball takes 1.5 s to reach a point vertically above the cross-bar of the posts.
 - (i) Calculate the ball's horizontal component of velocity, $v_{\rm h}$. Ignore air resistance.

$v_{\rm h}$	 	 	• •	 	•	 ٠.	••		 	••	 	 ٠.		•	
														cs	

(ii) The ball reaches its maximum height at the same time as it passes over the cross-bar. State the vertical component of velocity when the ball is at its maximum height.

.....(1 mark)

(iii)	The ball's maximum height is 11 m. Calculate, v_y , the vertical component of velocity of the
	ball immediately after it has been kicked. Ignore the effects of air resistance.

acceleration due to gravity, $g = 9.8 \text{ m s}^{-2}$

v _v	
•	(3 marks)

(b) (i) Determine the magnitude of the initial velocity, v, of the ball immediately after it is kicked.

.,				
<i>V</i>	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
				(3 marks)

(ii) Determine the angle above the horizontal at which the ball was kicked.

Angle		
(1 mark)		
State and explain at what instant the ball will have its maximum kinetic energy.		
(2 marks)		

 $\left(\frac{1}{12}\right)$

Turn over ▶

(c)

Total for this question: 8 marks

In the circuit in **Figure 4**, R_1 can be varied between 0 and $2.0 \,\mathrm{k}\Omega$. The resistance of the LDR, R_2 , can vary from $200 \,\Omega$ to $30 \,\mathrm{k}\Omega$ as the lighting conditions vary. The battery has no internal resistance.

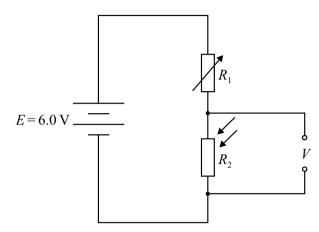


Figure 4

(a) Calculate the **minimum** possible value of the potential difference, *V*, across the LDR.

V(3 marks	
b) The circuit shown in Figure 4 can be used to monitor the brightness of the light falling on to the LDR. The values of <i>V</i> are processed by a computer. Describe how <i>V</i> has to be changed to make it suitable for computer processing. Two of the 5 marks in this question are for the quality of your written communication.	e
	••
	••
	••
	••
	••

(5 marks)

Total for this question: 7 marks

A copper cable connecting a car's battery to its starter motor carries a current of 150 A. The maximum voltage drop across the cable should be 0.13 V.

Show that the maximum permitted resistance of the cable should be approximately $9.0 \times 10^{-4} \,\Omega$.

(1 mark)

(b) The length of the cable is 0.24 m. Calculate the minimum cross-sectional area of the cable.

resistivity of copper = $1.6 \times 10^{-8} \Omega \,\mathrm{m}$

Minimum cross-sectional area.... (3 marks)

(c) Calculate the drift velocity of electrons in the cable when the current is 150 A.

the number of electrons per unit volume, *n*, for copper = 1.1×10^{29} m⁻³

e, the charge of an electron = -1.6×10^{-19} C

Drift velocity.....

(3 marks)

Total for this question: 9 marks

Figure 5 shows several 12 V, 21 W lamps connected in parallel. The circuit is protected by a fuse which melts if the current in the circuit exceeds 15 A.

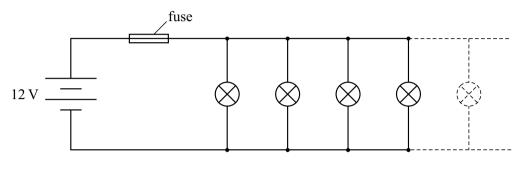


Figure 5

(a) Determine the maximum number, n, of lamps that can be used without melting the fuse.

n		
, , , , , , , , , , , , , , , , , , , ,	 	 (4 marks)

(b) Show that the working resistance of a single 12 V, 21 W lamp is 6.9 Ω .

(2 marks)

(c) Two of the 12 V, 21 W lamps are connected in parallel with a 12 V, 4.0 W lamp of resistance 36Ω as shown in **Figure 6**.

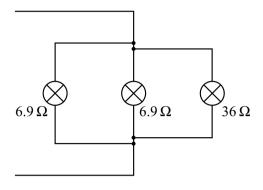


Figure 6

Calculate the resistance of the parallel combination of lamps, when they are working normally.

Resistance	
	(3 marks)

END OF QUESTIONS

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE