

General Certificate of Education

Physics 5456

Specification B

PHB1 Foundation Physics

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.

e.c.f is used to indicate that marks can be awarded if an error has been carried forward (e.c.f. must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only **(c.a.o.)** is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Only **one** unit penalty **(u.p.)** in this paper unless there is a mark allocated specifically for giving a correct unit in the marking. Note that the unit is only penalised in the final answer to the question.

Only **one** significant figure penalty **(s.f.)** in this paper.

Allow 2 or 3 s.f unless otherwise stated. s.f penalties include recurring figures and fractions for answers.

Marks should be awarded for **correct** alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

Quality of Written Communication

Before accessing marks for the Quality of Written Communication (QWC) a candidate must first score a minimum of one mark for the physics that is being communicated – this will allow access to 1 mark for QWC. If the candidate scores more marks for physics (a minimum of two or three – depending upon the total mark for that part of the question) then this will allow access to 2 marks for QWC.

Good QWC : the answer is fluent/well argued with few errors in spelling, punctuation and grammar	2	
Poor QWC : the answer lacks coherence or spelling, punctuation and grammar are poor	1	Max 2
Very Poor QWC : the answer is disjointed, with significant errors in spelling, punctuation and grammar	0	

PHB1 Foundation Physics

Question 1			
(a)	terminal speed/velocity	B1	1
(b)	clearly estimates number of squares	B1	
	quotes size of one square	B1	3
	gives answer to 3+ s.f. in range 2.6 – 2.9 m [2.75 m]	B1	
(c)	0.075 × 9.8 × b (i)	C1	2
	2.01 J [e.c.f] [2.21 J from 3 m]	A 1	2
			Total 6

Question 2			
(a)	zero (not low) resistance	B1	2
	at/below a transition/critical temperature	B1	2
(b)	(zero resistance means) reduced/no power loss	М1	
	or mention of I ² R	A 1	2
	or use of lower/zero voltage (M1) mention of $V = IR$ (A1)		_
			Total 4

Question 3			
(a)	attempt to equate moments	C1	
	$0.8F_1 = 0.75 \times 0.4 + 0.50 \times 0.3$	C1	3
	$F_1 = 0.56 \mathrm{N}$	A 1	
(b)	F_1 (ecf) + F_2 = 1.25/correct moments	C1	2
	$F_2 = 0.69 \text{N} (\text{e.c.f. from (a)})$	A 1	2
			Total 5

Question 4			
(a)	F = m a quoted	C1	
	a = 23/9.4	C1	3
	= 3670 N/3700 N/3680 N c.a.o.	A 1	
(b)	use of appropriate kinematic equation or average speed	C1	2
	11.5 × 9.4 = 108 m [110]	A 1	
			Total 5

Question 5			
(a)	parallel circuit shown/clearly used	M1	
	correct substitution into appropriate equation	C1	3
	375 ohm	A 1	
(b)	max 3 from:		
	metal resistance increases and thermistor resistance decreases	B1	
	appreciation of greater impediment to flow in both cases	B1	max 3
	extra charge carriers released in thermistor	B1	
	second effect greater than first in thermistor	B1	
			Total 6

Que	stion 6			
(a)		workable circuit, ammeter correct, cell symbol correct	B1	
		voltmeter correctly placed	B1	3
		means for varying resistance in circuit	B1	
(b)	(i)	clear use of graph, drawn line	B1	
		0.8 ± 0.02 V condone 0.8 V	B1	
	(ii)	appreciates gradient equals internal resistance or $\varepsilon = V + Ir$ (or alt) or solves for 2 pts on line	B1	4
		typically 0.8/5.4 \times 10 ⁻³ or alternative correct values from any above method seen	B1	
(c)		any evidence of Q = It used	C1	2
		[72 × 5.0 × 10 ⁻⁶ × 3600 =] 1.3 C	A 1	3
(d)	(i)	electrons	B1	2
	(ii)	ions	B1	2
(e)	(i)	series (circuit)	B1	2
	(ii)	large internal resistance so current small	B1	2
				Total 13

Question 7			
	up to 4: wind disadvantages		
	1 aesthetic (appearance/sound)	B1	
	2 environmental (e.g. wildlife, ecosystem)	B1	
	3 unreliability/inefficiency	B1	
	4 economic argument	B1	
	5 capacity argument (linked to space)	B1	
	up to 2 of: conversion processes		max 5
	6 wind kinetic energy to turbine (rotational) k.e.	B1	
	7 turbine rotates dynamo/generator/describes dynamo	B1	
	8 turbine rotational kinetic energy to electrical energy	B1	
	allow turbine/rotor/blades, condone 'kinetic' appearing only once		
	At least 2 marks for physics + Good QWC	2	
	At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC	1 0	
	1 mark for physics + sufficient attempt + Good or	1	max 2
	Poor QWC 1 mark for physics + insufficient attempt or Very Poor QWC	0	
	No marks for physics or Very Poor QWC	0	
			Total 7

Que	stion 8			
(a)	(i)	$\cos \theta = 1900/2100$	B1	
		θ = 25.2° must see 3+ s.f.	B1	4
	(ii)	force = 2100 sin 25	C1	4
		= 894/890 N	A 1	
(b)	(i)	time for one complete oscillation – 'complete' specified clearly	B1	
	(ii)	centre to max displacement/equilibrium point/distance (travelled)	B1	4
	(iii)	longer period	М1	
		because larger mass	A 1	
(c)		lift acts upwards	B1	
		weight/gravity pull acts downwards	B1	
		forces equal and opposite/cancel out (for horizontal flight)	B1	3
		or no resultant vertical force		
				Total 11

Question 9			
(a)	one volt across device when current is one amp owtte	B1	1
(b)	$R = \rho I/A$ quoted	C1	
	area = $(5 \times 10^{-3}) \times \text{thickness seen}$	C1	3
	1.3 × 10 ⁻⁶ m [1.25]	A 1	
(c)	power = 3²/1200 condone power of 10 error in this mark	C1	2
	7.5 mW [<i>allow</i> 8 mW]	A 1	
(d) (i)	use of $V_I = VR_I/(R_I + R_2)$ (values or lengths)	C1	
	0.48 V [allow 0.5 V]	A 1	4
(ii)	fresh calculation or 0.96 V less than 3 V	C1	4
	2.04/2.0/2 V	A 1	
(e)	V readoff correct [1.8 – 1.9 V]	B1	2
	conversion correct 1001 [c.a.o.]	B1	2
(f)	max 4 from		
	1 simultaneous multi-channel capture possible	B1	
	2 frequency of sampling	B1	
	3 possibility of data manipulation	B1	
	4 length of experiment	B1	max 4
	5 more data storage (in smaller places)	B1	
	6 up to 2 max analogue instrument errors	B1	
	7 any other valid, physically correct idea [e.g. parallax, reaction time, etc]	B1	
	At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC	2 1 0	
	1 mark for physics + sufficient attempt + Good or	1	max 2
	Poor QWC 1 mark for physics + insufficient attempt or Very Poor QWC	0	
	No marks for physics or Very Poor QWC	0	
			Total 18