

ALLIANCE

Mark scheme June 2003

GCE

Physics **B**

Unit PHB1

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

PHB1

Section A

Question 1

	Resistance decreasing with decreasing temperature above transition temperature Abrupt discontinuous vertical change to zero resistance at -120 °C	B1 B1	2
(a)	Use of moment formula $0.5 \times 550 + 1.2 \times 650 =$ Weight C $\times 2.1$ Weight C = 502 N	C1 C1 A1	
(b)	Weight of see-saw = $9.8 \times 35 = 343$ N or total people wt = $1200+C$ ecf Total weight = 2.05 kN	B1 B1	5

Question 3

(a) (i)	22-10 = 12 V	B1
(ii)	use of $V=IR$ $R_{\text{total}} = 12/0.25 = 48$ So $R = 48 - 0.9 = 47.1 \Omega$	C1 C1 A1

(b)	Charge = $It = 0.25 \times 8 \times 3600 = 7200 \text{ C}$	[cnao]	B1	5
-----	--	--------	----	---

Question 4

(a)	Time for one cycle One cycle defined correctly in terms of diagram, can be on diagram	M1 A1	
(b)	B Mention of air resistance, allow <i>drag</i> OR bob faster in centre of	B1	
	motion Links two ideas	B1 B1	5

Question 5

(a)	$[V_1 = V \times R_1 / (R_1 + R_2)]$	C1	
	$= 16 \times 1200/2000$ = 9.6 V	A1	
(b)	LDR resistance drops voltmeter reading decreases because more conduction electrons/charge carriers released	B1 B1 B1	5

Question 6

(a)	Electrons	B1	
(b)	<i>n</i> : number of charge carriers per unit volume OWTTE <i>v</i> : drift speed/velocity or average speed/velocity	B1 B1	3

Section B

Question 7

(a)	$V \propto I$ [allow proportional] physical condition constant	M1 A1
(b)(i)	Line goes through (12, 2) [within one square] Straight line at origin aimed at (1,0.5) and smooth curve (correct	B1
	shape) beyond (1,0.5)	B1
	Calculation clearly supporting second mark [$V=IR$, $I=0.5$, so $V=1$]	B1
(ii)	Correct shape for V +ve	M1
	Non-zero, positive breakaway from V-axis, $V \le 1V$; line not $> 1V$]	A1
	Zero current for reverse bias explicit	B1

8

Question 8

(a)(i)	$\frac{1}{2} mv^2 = \frac{1}{2} \times 2.8 \times 10^4 \times 71^2$	C1
	$= 7.1 \times 10^7 \mathrm{J}$	A1
(ii)	decel = gradient of graph or $a = (v-u)/t$ or $\Delta v/\Delta t$ or evidence on	
(11)	graph graph of $u = (v - u)/t$ of $\Delta v/\Delta t$ of evidence of graph	B1
	=(71-0)/(3.5-0)	B1
	$= 20.3 [\mathrm{m s^{-2}}]$	B1
(;;;)	$[F-m_{c}]$	
(iii)	$[F=ma] = 2.8 \times 10^4 \times 20.3$	C1
	=568 kN	A1
		~ 1
(b)(i)	$[F = 2T\cos \theta]$ some use of resolved vector	C1 C1
	$T = F/2 \cos \theta = 568\ 000/2 \times \cos 12.5^{\circ}$ (ecf)	A1
	= 291 000 [N]	
(ii)	$\left[\frac{1}{2}F\Delta l\right]$	
	$= \frac{1}{2} \times 290\ 000 \times 0.15$	01
	= 22 kJ [21.8]	C1 A1
	2 2 -	AI
(c)	$v^2 = u^2 + 2as$ $a = v^2/2s = 71^2/124$ or alt process	
	$a = \sqrt{2s} = 71/124$ or an process = 41 m s ⁻² [40.6]	C1
		A1

(d)	drawing correct, scale clearly stated, wind speed line>+ 2 cm or one	B1	
	correct calculation		
	speed 82/83/82.5 m s ⁻¹ [80 – 84 if drawn]	B1	
	course $14^{\circ} [12 - 16]$ west of north [346°]	B1	17

Question 9

Sensible method for timing	B1	
Sensible method for distance/speed measurement	B1	
max 2 for totally inappropriate method		
Analysis description	B1	
Further good detail (e.g. averaging or graphing <i>if analysis mark scored</i> /ignore air resistance with indication of effect on calculated g/in vacuum with good detail/electromagnetic release, must indicate logic of circuit/measure size of falling object if appropriate to expt/suitable described falling object/light gate used, show internal machine computation/datalogging with good detail/etc)	B1	
	21	
[any mark can be scored for detail shown on diagram]		
Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics	6	2
Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics		1
Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar		0 6

Question 10

(a)(i)	Use of $R = \rho l/A$ = 1.3 ×10 ⁵ × 12 × 10 ⁻³ /2.5 × 10 ⁻³ × 1.5 × 10 ⁻³ = 4.2 × 10 ⁸ Ω	C1 C1 A1
(ii)	$P = V^2/R$ = 25/4.2 × 10 ⁸ = 6.0 × 10 ⁻⁸ W	C1 A1
(iii)	total power = 12×10^{-8} W	B1
(iv)	area = $(7.5 \times 10^{-3}) \times 12 \times 10^{-3} [= 90 \times 10^{-6} \text{ m}^2]$	C1
	$p/area = 12 \times 10^{-8}/90 \times 10^{-6}$ = 1.3 mW m ⁻²	A1

(b)(i)	area goes down 100 times, or quotes area $3.75 \times 10^{-8} \text{ m}^2$ $R = \rho(l \times 10)/(A \times 100)$, or quotes length $12 \times 10^{-4} \text{ m}$	B1	
	[so resistance goes up 10 times]	B1	
(ii)	power dissipated is reduced [power down 10 times] through area that is smaller by bigger factor than power	B1 B1	12
Quest	ion 11		
	Energy extracted from internal energy of rocks	B1	
	origin: original formation of Earth (e.g. volcanic activity) or present radioactive decays	B1	
	heat used to produce steam	B1	
	for conventional turbine-generator system	B1	
	advantage no fuel cost/no pollution/etc [not no running costs]	B1	
	disadvantage sites limited by geology/expensive set-up only if comparison with other energy source/steam/water often very corrosivehigh maintenance	B1	
	Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics		2
	Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics		1
	Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar		0 7