GCE

Physics A

Unit PHA9/W

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

[^0]
Units 5-9: Section A

1
(a)(i)

correct arrows: A

(a)(ii) $\mathrm{e}^{-1}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{Z}-1}^{\mathrm{A}} \mathrm{Y}+v_{\mathrm{e}} \checkmark$
(b)(i) $\quad\left((4.18-1.33) \times 10^{-13}\right)=2.85 \times 10^{-13}(\mathrm{~J}) \checkmark$
(b)(ii) $1.33 \times 10^{-13}(\mathrm{~J})$
$0.30 \times 10^{-13}(\mathrm{~J}) \quad$ for 3 correct values \checkmark
$1.63 \times 10^{-13}(\mathrm{~J})$
(b)(iii) (use of $\Delta E=h f$ gives) $f\left(=\frac{1.63 \times 10^{-13}}{6.63 \times 10^{-34}}\right)=2.46 \times 10^{20} \mathrm{~Hz}$
(allow C.E. from (b)(ii) if largest value taken)
(c)(i) $\left(\checkmark\right.$ for each precaution with reason to $\left.\max ^{2}\right)$
handle with (long) (30 cm) tweezers because the radiation intensity decreases with distance
store in a lead box (immediately) when not in use to avoid unnecessary exposure to radiation
[or any sensible precaution with reason]
(b)(ii) γ rays are more penetrating and are therefore more hazardous (to the internal organs of the body)
β^{-}particles are more hazardous because they are more ionising (\checkmark for any argued case for either radiation)

Unit 9 : PHA9/W : Section B

2
(a)(i) suitable scales \checkmark
correctly plotted points
straight line
(a)(ii) (use of $X_{\mathrm{C}}=\frac{1}{2 \pi f C}$ gives) $V=\frac{I}{2 \pi f C}$
$C=\frac{I}{f} \times \frac{1}{2 \pi V}=$ gradient $\times \frac{1}{2 \pi V} \checkmark$
$\left[\right.$ gradient $\left.\left(=\frac{I}{f}\right)=20 \pi C\right]$
$C=\frac{18.2 \times 10^{-3}}{1600} \times \frac{1}{2 \pi 10}=0.18 \mu \mathrm{~F} \quad \checkmark$
(b)(i) at high f, reactance, X_{C}, has a low value (compared to R) most of voltage dropped across R making $V_{\text {out }}$ small \checkmark
(b)(ii) when $X_{\mathrm{C}}=R, f=\frac{1}{2 \pi R C} \checkmark$

$$
\begin{aligned}
& f= \frac{1}{2 \pi 2 \times 10^{3} \times 0.18 \times 10^{-6}}=442 \mathrm{~Hz} \checkmark \\
& \quad \text { (allow C.E. for value of } C \text { from (a)(ii)) }
\end{aligned}
$$

(b)(iii) for $f \ll 440 \mathrm{~Hz}, V_{\text {out }} \approx V_{\text {in }} \checkmark$

$$
\begin{align*}
& \frac{V_{\text {out }}}{V_{\text {in }}} \rightarrow 1 \\
& {\left[\text { or } \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\sqrt{1+f^{2} / f_{0}^{2}}}\right]} \tag{5}
\end{align*}
$$

3
(a)(i) potential at P is very low $\approx 0.2 \mathrm{~V}($ or 0 V$)$
(a)(ii) TR is off
\therefore no current through relays (alarm off)
(b) potential at P goes high $(12 \mathrm{~V}) \checkmark[$ or $>0.7 \mathrm{~V}]$

TR conducts current through relays and alarm switches on
(c) TR off
[or transistor by-passed] \checkmark still a current through relay \checkmark
(d) protects the transistor \checkmark

4
(a) $\quad V_{-}=12 \times \frac{30}{46} \checkmark$

$$
\begin{equation*}
=7.8 \mathrm{~V} \checkmark \tag{2}
\end{equation*}
$$

(b)(i) between $V_{\text {out }}$ and 0 V
(or from +12 V to $V_{\text {out }}$)
correct direction and resistor
(b)(ii) (since $V_{\text {in }}<$ switching voltage) $V_{\text {out }}=-12 \mathrm{~V}$ (12 V across LED) (or alternative)
(b)(iii) voltage across $\mathrm{R}=(12-2)=10(\mathrm{~V}) \checkmark$
$10=25 \times 10^{-3} \times R$ gives $R=400 \Omega$
(or alternatively $22=25 \times 10^{-3}$ to give $R=880 \Omega$)
(c) to switch LED voltage at $\mathrm{B}=7.8(\mathrm{~V})$
R_{LDR} given by $7.8=\frac{12 \times 47}{(47+R)}$ or \checkmark

$$
R_{\mathrm{LDR}}=25 .(3) \mathrm{k} \Omega \checkmark
$$

light level $=30$ lux \checkmark

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth \&t Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1H0
 Kathleen Tattersall: Director General

