

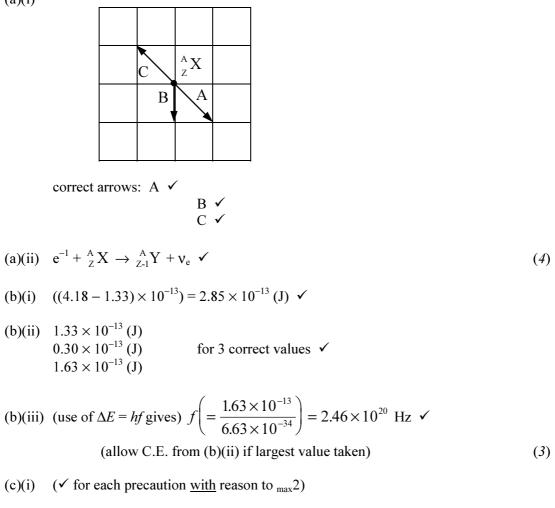
ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PHA9/W


Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

Units 5 - 9 : Section A

1 (a)(i)

handle with (long) (30 cm) tweezers because the radiation intensity decreases with distance

store in a lead box (immediately) when not in use to avoid unnecessary exposure to radiation

[or any sensible precaution with reason]

(b)(ii) γ rays are more penetrating and are therefore more hazardous (to the internal organs of the body)

 β^- particles are more hazardous because they are more ionising \checkmark (\checkmark for any argued case for either radiation)

 $\frac{(3)}{(10)}$

Unit 9 : PHA9/W : Section B

2

(a)(i) suitable scales ✓
 correctly plotted points ✓
 straight line ✓

(a)(ii) (use of
$$X_C = \frac{1}{2\pi fC}$$
 gives) $V = \frac{I}{2\pi fC} \checkmark$
 $C = \frac{I}{f} \times \frac{1}{2\pi V} = \text{gradient} \times \frac{1}{2\pi V} \checkmark$
[gradient $\left(=\frac{I}{f}\right) = 20\pi C$]
 $C = \frac{18.2 \times 10^{-3}}{1600} \times \frac{1}{2\pi 10} = 0.18 \,\mu\text{F} \checkmark$
max(5)

(b)(i) at high *f*, reactance, X_c , has a low value (compared to *R*) \checkmark most of voltage dropped across *R* making V_{out} small \checkmark

(b)(ii) when
$$X_{\rm C} = R$$
, $f = \frac{1}{2\pi RC}$
 $f = \frac{1}{2\pi 2 \times 10^3 \times 0.18 \times 10^{-6}} = 442 \, \text{Hz}$
(allow C.E. for value of *C* from (a)(ii))

(b)(iii) for
$$f << 440$$
 Hz, $V_{out} \approx V_{in} \checkmark$

$$\frac{V_{out}}{V_{in}} \rightarrow 1 \checkmark$$

$$\left[\text{or } \frac{V_{out}}{V_{in}} = \frac{1}{\sqrt{1 + f^2 / f_0^2}} \right]$$

$$\max(5)$$
(10)

3

- (a)(i) potential at P is very low ≈ 0.2 V (or 0 V) \checkmark
- (a)(ii) TR is off \checkmark \therefore no current through relays (alarm off) \checkmark (3)
- (b) potential at P goes high (12 V) \checkmark [or > 0.7 V] TR conducts \checkmark current through relays and alarm switches on \checkmark max(2)

www.theallpapers.com

(c)	TR off	
	[or transistor by-passed] 🗸	
	still a current through relay \checkmark	(2)
(d)	protects the transistor \checkmark	<u>(1)</u>

 $\frac{(1)}{(8)}$

4

(a)
$$V_{-} = 12 \times \frac{30}{46} \checkmark$$
$$= 7.8 \text{ V } \checkmark$$
(2)

- (b)(i) between V_{out} and $0 V \checkmark$ (or from +12 V to V_{out}) correct direction and resistor \checkmark
- (b)(ii) (since V_{in} < switching voltage) V_{out} = -12 V (12 V across LED) \checkmark (or alternative)
- (b)(iii) voltage across R = (12 2) = 10 (V) \checkmark $10 = 25 \times 10^{-3} \times R$ gives $R = 400 \ \Omega \checkmark$ (5) (or alternatively $22 = 25 \times 10^{-3}$ to give $R = 880 \ \Omega$)
- (c) to switch LED voltage at B = 7.8 (V) \checkmark R_{LDR} given by $7.8 = \frac{12 \times 47}{(47 + R)}$ or \checkmark $R_{\text{LDR}} = 25.(3) \text{ k}\Omega \checkmark$ light level = 30 lux \checkmark $\max(3)$ (10)

QWC marks given for Q1(c)(i) and Q2(b)

 $\frac{(2)}{(2)}$