GCE

Physics A

Unit PHA8/W

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

[^0]
Units 5-9: Section A

1
(a)(i)

correct arrows: A

(a)(ii) $\mathrm{e}^{-1}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{Z}-1}^{\mathrm{A}} \mathrm{Y}+v_{\mathrm{e}} \checkmark$
(b)(i) $\quad\left((4.18-1.33) \times 10^{-13}\right)=2.85 \times 10^{-13}(\mathrm{~J}) \checkmark$
(b)(ii) $1.33 \times 10^{-13}(\mathrm{~J})$
$0.30 \times 10^{-13}(\mathrm{~J}) \quad$ for 3 correct values \checkmark
$1.63 \times 10^{-13}(\mathrm{~J})$
(b)(iii) (use of $\Delta E=h f$ gives) $f\left(=\frac{1.63 \times 10^{-13}}{6.63 \times 10^{-34}}\right)=2.46 \times 10^{20} \mathrm{~Hz}$
(allow C.E. from (b)(ii) if largest value taken)
(c)(i) $\left(\checkmark\right.$ for each precaution with reason to $\left.\max ^{2}\right)$
handle with (long) (30 cm) tweezers because the radiation intensity decreases with distance
store in a lead box (immediately) when not in use to avoid unnecessary exposure to radiation
[or any sensible precaution with reason]
(b)(ii) γ rays are more penetrating and are therefore more hazardous (to the internal organs of the body)
β^{-}particles are more hazardous because they are more ionising (\checkmark for any argued case for either radiation)

Unit 8 : Section B

2
(a)(i) (vertically) upwards
(a)(ii) $m g=q E, \therefore \frac{q}{m}=\frac{g}{E} \checkmark$

$$
\begin{equation*}
=\frac{9.8}{4.9 \times 10^{5}} \checkmark \quad\left(=2.0 \times 10^{-5} \mathrm{C} \mathrm{~kg}^{-1}\right) \tag{3}
\end{equation*}
$$

(b) initial downwards acceleration due to weight (or gravity) viscous force/drag/friction (or resistance) due to air increases with increase in speed speed increases until drag become equal to (and opposite to) weight \checkmark (no resultant force) hence no acceleration

3
(a)(i) two beams (or rays) reach the observer interference takes place between the two beams bright fringe formed if/where (optical) path difference $=$ whole number of wavelengths (or two beams in phase)
[or dark fringe formed if/where (optical) path difference $=$ whole number +0.5 wavelengths] (or two beams out of phase by $180^{\circ} \mathrm{C} / \pi / 2 / 1 / 2$ cycle)
(a)(ii) rotation by 90° realigns beams relative to direction of Earth's motion no shift means no change in optical path difference between the two beams
(\therefore) time taken by light to travel to each mirror unchanged by rotation distance to mirrors is unchanged by rotation
(\therefore) no shift means that the speed of light is unaffected [or disproves other theory]
(b) the speed of light does not depend on the motion of the light source or that of the observer \checkmark
(a)(i) suitable description and outline detail
for an appropriate named particle
(e.g. electron diffraction of a beam of electrons by a thin metal sample or tunnelling in the STM across a gap by electrons)
(a)(ii) suitable description and outline detail
for an appropriate named particle
(e.g. a beam of electrons deflected by an electric or magnetic field or collision/impact on a screen of electrons/ions)
(b)(i) $E_{\mathrm{k}}=5.0 \times 10^{6} \times 1.6 \times 10^{-19}(\mathrm{~J}) \quad \checkmark$

$$
\begin{aligned}
\text { (use of } E_{\mathrm{k}}=1 / 2 m v^{2} \text { gives) } v\left(=\left(\frac{2 E_{\mathrm{k}}}{\mathrm{~m}}\right)^{1 / 2}\right) & =\frac{\left(2 \times 5.0 \times 1.6 \times 10^{-13}\right)^{1 / 2}}{1.67 \times 10^{-27}} \checkmark \\
& \left(=3.1 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
$$

(b)(ii) (use of $\lambda=\frac{h}{m v}$ gives) $\lambda=\frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 3.1 \times 10^{7}}$

$$
=1.3 \times 10^{-14} \mathrm{~m}
$$

[or alternatively
$\lambda\left(=\frac{h}{\sqrt{2 m e V}}\right)=\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-19} \times 5 \times 10^{6}}}$

$$
\begin{equation*}
\left.=1.3 \times 10^{-14} \mathrm{~m}\right] \tag{4}
\end{equation*}
$$

5
(a) magnetic force perpendicular to (direction of) motion (or velocity) force does not change speed (or force does no work) \checkmark
force causes direction of motion to change
force (or acceleration) is centripetal/ acts towards centre of curvature velocity is tangential
(b)(i) magnetic force $=B e v$
centripetal acceleration $=\frac{v^{2}}{r}, \therefore B e v=\frac{m v^{2}}{r} \checkmark \quad\left(\right.$ gives $\left.v=\frac{B e r}{m}\right)$
(b)(ii) $\frac{m v^{2}}{r}=B e v$ gives $\frac{e}{m}=\frac{v}{B r} \checkmark$

$$
\begin{align*}
& =\frac{3.2 \times 10^{7}}{7.3 \times 10^{-3} \times 25 \times 10^{-3}} \tag{8}\\
& =1.75 \times 10^{11} \mathrm{C} \mathrm{~kg}^{-1} \tag{5}
\end{align*}
$$

Quality of Written Communication (Q1(c)(i) and Q5(a)) $\checkmark \checkmark$
(2)

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth \&t Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1H0
 Kathleen Tattersall: Director General

