

ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PHA8/W

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

Units 5 - 9 : Section A

1 (a)(i)

handle with (long) (30 cm) tweezers because the radiation intensity decreases with distance

store in a lead box (immediately) when not in use to avoid unnecessary exposure to radiation

[or any sensible precaution with reason]

(b)(ii) γ rays are more penetrating and are therefore more hazardous (to the internal organs of the body)

 β^- particles are more hazardous because they are more ionising \checkmark (\checkmark for any argued case for either radiation)

 $\frac{(3)}{(10)}$

Unit 8 : Section B

2

(a)(i) (vertically) upwards \checkmark

(a)(ii)
$$mg = qE$$
, $\therefore \frac{q}{m} = \frac{g}{E} \checkmark$
= $\frac{9.8}{4.9 \times 10^5} \checkmark (= 2.0 \times 10^{-5} \,\mathrm{C \, kg^{-1}})$ (3)

(b)	initial downwards acceleration due to weight (or gravity) \checkmark	
	viscous force/drag/friction (or resistance) due to air	
	increases with increase in speed \checkmark	
	speed increases until drag become equal to (and opposite to) weight	\checkmark
	(no resultant force) hence no acceleration \checkmark	$\max(3)$
		(6)

3

- two beams (or rays) reach the observer \checkmark (a)(i) interference takes place between the two beams \checkmark bright fringe formed if/where (optical) path difference = whole number of wavelengths (or two beams in phase) [or dark fringe formed if/where (optical) path difference = whole number + 0.5 wavelengths] (or two beams out of phase by 180 °C/ $\pi/2$ /½ cycle) \checkmark (a)(ii) rotation by 90° realigns beams relative to direction of Earth's motion \checkmark no shift means no change in optical path difference between the two beams \checkmark (:.) time taken by light to travel to each mirror unchanged by rotation \checkmark distance to mirrors is unchanged by rotation \checkmark (::) no shift means that the speed of light is unaffected [or disproves other theory] \checkmark $_{\rm max}(5)$
- (b) the speed of light does not depend on the motion of the light source \checkmark or that of the observer \checkmark (2) (7)

www.theallpapers.com

4

- (a)(i) suitable description and outline detail ✓
 for an appropriate named particle ✓
 (e.g. electron diffraction of a beam of electrons by a thin metal sample or tunnelling in the STM across a gap by electrons)
- (a)(ii) suitable description and outline detail ✓
 for an appropriate named particle ✓
 (e.g. a beam of electrons deflected by an electric or magnetic field or collision/impact on a screen of electrons/ions)

(b)(i)
$$E_{\rm k} = 5.0 \times 10^6 \times 1.6 \times 10^{-19} \, ({\rm J}) \checkmark$$

(use of $E_{\rm k} = \frac{1}{2}mv^2$ gives) $v \left(= \left(\frac{2E_{\rm k}}{m}\right)^{1/2}\right) = \frac{(2 \times 5.0 \times 1.6 \times 10^{-13})^{1/2}}{1.67 \times 10^{-27}} \checkmark$
 $(= 3.1 \times 10^7 \, {\rm m \, s^{-1}})$

(b)(ii) (use of
$$\lambda = \frac{h}{mv}$$
 gives) $\lambda = \frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 3.1 \times 10^7} \checkmark$
= 1.3×10^{-14} m

$$\lambda \left(= \frac{h}{\sqrt{2meV}} \right) = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-19} \times 5 \times 10^{6}}}$$

= 1.3 × 10⁻¹⁴ m] \checkmark

5

(a) magnetic force perpendicular to (direction of) motion (or velocity) ✓
 force does not change speed (or force does no work) ✓
 force causes direction of motion to change ✓
 force (or acceleration) is centripetal/ acts towards centre of curvature ✓
 velocity is tangential ✓

(b)(i) magnetic force =
$$Bev \checkmark$$

centripetal acceleration = $\frac{v^2}{r}$, $\therefore Bev = \frac{mv^2}{r} \checkmark (gives v = \frac{Ber}{m})$

(b)(ii)
$$\frac{mv^2}{r} = Bev$$
 gives $\frac{e}{m} = \frac{v}{Br}$

max(3)

 $\frac{(4)}{(7)}$

$$= \frac{3.2 \times 10^{7}}{7.3 \times 10^{-3} \times 25 \times 10^{-3}} \checkmark$$

= 1.75 × 10¹¹ C kg⁻¹ ✓ (5)
(8)

Quality of Written Communication (Q1(c)(i) and Q5(a))
$$\checkmark$$
(2)(2)(2)