

ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PHA7/W

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

Units 5 - 9 : Section A

1 (a)(i)

handle with (long) (30 cm) tweezers because the radiation intensity decreases with distance

store in a lead box (immediately) when not in use to avoid unnecessary exposure to radiation

[or any sensible precaution with reason]

(b)(ii) γ rays are more penetrating and are therefore more hazardous (to the internal organs of the body)

 β^- particles are more hazardous because they are more ionising \checkmark (\checkmark for any argued case for either radiation)

 $\frac{(3)}{(10)}$

Unit 7 : Section B

2

(a) (use of
$$v = \omega r$$
 gives $\omega = \frac{3.5}{0.2} = 18 \text{ rad s}^{-1} \checkmark$ (1)

(b)(i)
$$\alpha = \frac{\omega_2 - \omega_1}{t} = (-)\frac{(17.5 + 17.5)}{4.6} = (-)7.6 \text{ rad s}^{-2} \checkmark$$

- (b)(ii) (use of $T = I\alpha$ gives) $T = 40 \times 7.6 = 300$ N m \checkmark (allow C.E. for value of α from (i))
- (b)(iii) (use of *angular impulse* = Tt gives) angular impulse = $300 \times 4.6 = 1.4 \times 10^3$ kg m² rad s⁻¹ \checkmark (allow C.E. for value of T from (ii))
- (b)(iv) uniform torque therefore uniform acceleration, $\therefore t = 2.3$ s \checkmark

$$\theta = \frac{(\omega_1 + \omega_2)}{2}t = \frac{17.5}{2}2.3 = 20(.13) \text{ (rad) } \checkmark$$
number of turns = $\frac{20.13}{2\pi} = 3.2$ (so 3 complete turns) \checkmark (6)
(7)

3

(a)(i) torque = $4 \times 0.60 \times 1.8 = 4.3(2)$ N m \checkmark

(a)(ii)
$$\omega = \frac{2\pi}{110} = 5.7(1) \times 10^{-2} \text{ (rad s}^{-1}) \checkmark$$

at steady speed, frictional torque = applied torque \checkmark
(use of $P = T\omega$ gives) $P = 4.32 \times 5.71 \times 10^{-2} = 0.25 \text{ W} \checkmark$
(allow C.E. for value of T from (i)) (4)

(b)(i) average power = $0.5 \times 0.25 = 0.125$ (W) \checkmark energy = average power \times time = 0.125×12 \checkmark (= 1.5 J) (allow C.E. for value of *P* from (a)(ii))

(b)(ii) (use of *kinetic energy* =
$$\frac{1}{2}I\omega^2 = 1.5$$
 gives)

$$I = \frac{2 \times 1.5}{(5.71 \times 10^{-2})^2} = 910 \text{ kg m}^2 \checkmark$$
(allow C.E. for value of ω from (a)(ii)) (3)
(7)

4 (a

a) (use of
$$pV^{\gamma} = constant$$
 gives)
 $1.01 \times 10^5 \times (4.25 \times 10^{-4})^{1.4} = 1.70 \times 10^5 \times V^{1.4} \checkmark$
V calculated correctly (= 2.93 × 10^{-4})
or substitution to show equal $pV^{\gamma} \checkmark$ (2)

(b)
$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \checkmark$$

 $T_1 = 273 + 23 = 296 \text{ (K) } \checkmark$
 $T_2 = \frac{1.7 \times 10^5 \times 2.93 \times 10^{-4} \times 296}{1.01 \times 10^5 \times 4.25 \times 10^{-4}} = 343 \text{ K}$ (70 °C) \checkmark (3)

(c) slow compression is isothermal (temperature does not increase)
$$\checkmark$$

greater change in volume needed to rise to same final pressure \checkmark
(or correct *pV* sketches showing adiabatic and isothermal processes)
hence less $\checkmark\checkmark$ (3)
(8)

5 (a

(a) work per cycle = area enclosed =
$$6 \times 10^5 \times 4.5 \times 10^{-3} = 2.7$$
 (kJ) \checkmark
power = work output per sec = $\frac{2700}{0.20} = 13.5$ kW \checkmark
(allow C.E. for incorrect work per cycle) (2)

(b) modified engine uses less steam per cycle
$$\checkmark$$

so lower energy input per cycle \checkmark
input energy per cycle $\approx \frac{1}{3}$ of that in unmodified cycle \checkmark
work output per cycle is less than for unmodified cycle \checkmark
work output per cycle $> \frac{1}{2}$ of that in unmodified cycle \checkmark
hence greater efficiency \checkmark
 $\frac{max(4)}{(6)}$

Quality of Written Communication (Q1(c)(i) and Q5(b))

<u>(2)</u> (2)