GCE

Physics A

Unit PHA6/W

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

[^0]
Units 5-9: Section A

1
(a)(i)

correct arrows: A \checkmark
B \checkmark
C \checkmark
(a)(ii) $\mathrm{e}^{-1}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{Z}-1}^{\mathrm{A}} \mathrm{Y}+\mathrm{v}_{\mathrm{e}}$
(b)(i) $\quad\left((4.18-1.33) \times 10^{-13}\right)=2.85 \times 10^{-13}(\mathrm{~J}) \checkmark$
(b)(ii) $1.33 \times 10^{-13}(\mathrm{~J})$
$0.30 \times 10^{-13}(\mathrm{~J}) \quad$ for 3 correct values \checkmark
$1.63 \times 10^{-13}(\mathrm{~J})$
(b)(iii) (use of $\Delta E=h f$ gives) $f\left(=\frac{1.63 \times 10^{-13}}{6.63 \times 10^{-34}}\right)=2.46 \times 10^{20} \mathrm{~Hz} \checkmark$

> (allow C.E. from (b)(ii) if largest value taken)
(c)(i) (\checkmark for each precaution with reason to $\max ^{2}$)
handle with (long) (30 cm) tweezers
because the radiation intensity decreases with distance
store in a lead box (immediately) when not in use
to avoid unnecessary exposure to radiation
[or any sensible precaution with reason]
(b)(ii) γ rays are more penetrating and are therefore more hazardous (to the internal organs of the body)
β^{-}particles are more hazardous because they are more ionising (\checkmark for any argued case for either radiation)

Unit 6 : Section B

2
(a) diagram to show: rays refracted inwards at cornea rays refracted inwards at lens rays focused at optic axis on retina
(b) only cones at fovea
moving away from fovea, more rods, less cones
(c)(i) to control the intensity of light reaching retina
(c)(ii) forms a small pupil
(d)(i) accommodation: ability of the eye/lens to (change and) focus on different object distances
[adjustment of the eye/lens to form a clearly focused image on the retina]
(d)(ii) changing the shape of the lens
[or using the cillary muscles]

3
(a) axes: time $/ \mathrm{ms}$, action potential $/ \mathrm{mV}$ time scale from $1 \rightarrow 5$ (approx) action potential scale $+20 \rightarrow-80$ or $+30 \rightarrow-70 \checkmark$
(b) $\quad \mathrm{Na}^{+}$ions move into cell pd rises (from -70 to 0) (or +30), called depolarisation K^{+}ions move out of nerve pd returns/falls to $-70 /$ resting potential, called repolarisation Na^{+}moving from 0 to +30 called reverse polarisation to restore starting equilibrium of ions, the Na / K pump operates

4
(a) A ear drum or tympanic membrane \checkmark transfers vibration of sound waves into mechanical oscillations \checkmark

B ossicles \checkmark
system of levers to multiply the force
[or system of levers to link outer and inner ear]
C cochlea \checkmark
converts pressure wave in fluid into electrical signal \checkmark
(b) (use of intensity level $=10 \log \frac{I}{I_{0}}$ gives) $\quad 42=10 \log \frac{I}{1.0 \times 10^{-12}} \quad \checkmark$ $I=1.6 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \checkmark$

5
(a)(i) method 1: increasing pd across the tube method 2: increasing tube current or increasing filament temperature
(a)(ii) method 1: will increase the maximum photon energy method 2: will not change the maximum photon energy max (3)
(b) reduces intensity of low energy photons hardly changes intensity of high energy photons need high energy for picture [or low energy no good for picture] reducing low energy reduces dose received by patient $\max (3)$

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth \&t Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1H0
 Kathleen Tattersall: Director General

