GCE

Physics A

Unit PHA3/W

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

[^0]
Unit 3

1
(a) between A and C: (each) series resistance $=100 \Omega \checkmark$
(parallel resistors give) $\frac{1}{100}+\frac{1}{100}=\frac{1}{50}$ gives $R_{\mathrm{AC}}=50 \Omega \checkmark$
(allow C.E. for incorrect series resistance)
(b) between A and B: \quad series resistance $=150 \Omega$
parallel $=\frac{1}{50}+\frac{1}{150} \checkmark$
(allow C.E. for series resistance)
$R_{\mathrm{AB}}=37.5 \Omega \checkmark \quad(38 \Omega)$
(3)
(5)

2
(i) $\quad(V=I R$ gives) $12=(30+30+2) I \checkmark$

$$
I=\left(\frac{12}{62}\right)=0.19 \mathrm{~A} \checkmark \quad(0.194 \mathrm{~A})
$$

(ii) $\quad V_{\mathrm{PQ}}=12-(0.19 \times 2)$

$$
=11.6 \mathrm{~V}
$$

(allow C.E. for incorrect I in (i))
[or $\left.V_{\mathrm{PQ}}=0.19 \times 60=11.6 \mathrm{~V}\right] \quad(I=0.194 \mathrm{~A}$ gives 11.6 V$)$
[or $V_{\mathrm{PQ}}=12 \times \frac{60}{62}=11.6 \mathrm{~V}$
(iii) $\quad\left(P_{\mathrm{A}}=I^{2} R\right.$ gives) $P_{\mathrm{A}}=(0.19)^{2} \times 30=1.08 \checkmark \mathrm{~W}$
[or $P_{\mathrm{A}}=\frac{V^{2}}{R}$]
(allow C.E. for incorrect I in (i) or incorrect V in (ii))
(iv) $\quad\left(E=P_{\mathrm{A}} t\right.$ gives) $E=1.08 \times 20$

$$
\begin{equation*}
=21.6 \mathrm{~J} \checkmark \tag{8}
\end{equation*}
$$

(allow C.E. for incorrect P_{A} in (iii))

3
(a)(i) for X: $(P=V I$ gives $) 24=12 I$ and $I=2 \mathrm{~A} \checkmark$
for $\mathrm{Y} \quad 18=6 I$ and $I=3 \mathrm{~A} \checkmark$
(b)(i) 12 V
(b)(ii) voltage across $\mathrm{R}_{2}(=12-6)=6(\mathrm{~V})$
$I=3$ (A) \checkmark
($V=I R$ gives) $6=3 \mathrm{R}_{2}$ and $R_{2}=2 \Omega$ (allow C.E. for I and V from (a) and (b)(i))
[or $\left.V=I\left(R_{\mathrm{y}}+R_{2}\right) \checkmark \quad 12=3\left(2+R_{2}\right) \checkmark \quad R_{2}=2 \Omega \quad \checkmark\right]$
(b)(iii) current $=2(\mathrm{~A})+3(\mathrm{~A})=5 \mathrm{~A} \checkmark$
(allow C.E. for values of the currents)
(b)(iv) $27(\mathrm{~V})-12(\mathrm{~V})=15 \mathrm{~V}$ across R_{1}
(b)(v) for $\mathrm{R}_{1}, 15=5 R_{1}$ and $R_{1}=3 \Omega$
(allow C.E. for values of I and V from (iii) and (iv)

4
(a)(i) battery, milliammeter, and wire in series $\checkmark \checkmark$
voltmeter across the wire \checkmark
variable resistor/potential divider in series \checkmark
(a)(ii) alter variable resistor
to obtain a series of values of I and V
(a)(iii) plot a graph of V against I
gradient $=R \quad \checkmark$
[or calculate $R=V / I$ for each reading and take mean]
(b)(i) $\quad\left(P=\frac{V^{2}}{R}\right.$ gives) $1200=\frac{230^{2}}{R} \checkmark$
$R=44.1 \Omega \checkmark$
(b)(ii) $\quad R=\frac{\rho l}{A} \checkmark$
$l=\frac{44.1 \times 9.4 \times 10^{-8}}{1.1 \times 10^{-6}} \checkmark$
$=3.8 \mathrm{~m}$
(allow C.E. for value of R in (i))

5(a)(i) $\mathrm{X} \checkmark$
stress (force) \propto strain (extension) for the whole length
(ii) Y
has lower breaking stress (or force/unit area is less)
(iii) Y
exhibits plastic behaviour
(iv) $\mathrm{Y} \checkmark$
for given stress, Y has greater extension
[or greater area under graph]
(b)(i) (use of $E=\frac{F}{A} \times \frac{l}{e}$ gives)

$$
\begin{aligned}
\mathrm{F}\left(=\frac{E A e}{l}\right)= & \frac{2.0 \times 10^{7} \times 0.64 \times 10^{-6} \times 30 \times 10^{-3}}{160 \times 10^{-3}} \\
& =\underset{ }{\checkmark \text { for data into correct equation, } \checkmark \text { for correct area }} \quad(\text { allow C.E. for incorrect area conversion })
\end{aligned}
$$

(ii) (use of energy stored $=1 / 2 F$ e gives) \quad energy $=\frac{2.4 \times 30 \times 10^{-3}}{2} \checkmark$

$$
=36 \times 10^{-3} \mathrm{~J} \checkmark
$$

(allow C.E. for value of F from (i))

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth \&t Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1H0
 Kathleen Tattersall: Director General

