GCE

Physics A

Unit PA10

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

[^0]
Unit 10

1
(a)(i) $\quad r=0.012(\mathrm{~m})$
(use of $v=2 \pi f r$ gives) $v=2 \pi 50 \times 0.012$

$$
=3.8 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \quad\left(3.77 \mathrm{~m} \mathrm{~s}^{-1}\right)
$$

(a)(ii) correct use of $a=\frac{v^{2}}{r}$ or $a=\frac{3.8^{2}}{0.012}$

$$
\begin{equation*}
=1.2 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-2} \checkmark \tag{5}
\end{equation*}
$$

[or correct use of $\alpha=\omega^{2} r$]
(allow C.E. for value of v from (i)
(b) panel resonates
(because) motor frequency = natural frequency of panel

2
(a)(i) pd across resistor $(=3.0-2.2)=0.8(\mathrm{~V}) \checkmark$
(use of $V=I R$ gives) $R\left(=\frac{0.8}{0.035}\right)=23 \Omega \checkmark$
(a)(ii) charge flow in $1 \mathrm{~s}=0.035$ (C) \checkmark
no. of electrons (in 1 s$)\left(=\frac{0.035}{1.6 \times 10^{-19}}\right)=2.2 \times 10^{17} \checkmark \quad\left(2.19 \times 10^{17}\right)$
(b)(i) (use of $E=h f=\frac{h c}{\lambda}$ gives) $E=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{635 \times 10^{-9}} \checkmark$

$$
=3.1(3) \times 10^{-19} \mathrm{~J}
$$

(b)(ii) (use of $P=V I$ gives) $P(=2.2 \times 0.035)=0.077$ (W) \checkmark
[or use of $P=I^{2} R$ with $R\left(=\frac{2.2}{0.035}\right)=63(\Omega)$]
maximum no. of photons emitted per sec. $=\frac{0.077}{3.1 \times 10^{-19}}$

$$
\begin{equation*}
=2.5 \times 10^{17} \quad\left(2.48 \times 10^{17}\right) \tag{4}
\end{equation*}
$$

(allow C.E. for value of E from (i) and value of P from (ii))

3
(a)(i) (use of $P=V I$ gives) $P(=2.4 \times 20)=48 \mathrm{~W}$
(a)(ii) incident (solar) power $(=1.4 \times 2.5)=3.5(\mathrm{~kW}) \checkmark$
efficiency $=\frac{48}{3500} \checkmark$

$$
=0.014 \checkmark(\text { or } 1.4 \%)
$$

[or efficiency $\left.=\frac{48}{2.5} / 1400\right]$
(allow C.E. for incorrect values of input and output power)
(b)(i) in 1 s source emits 1.1×10^{14} particles \checkmark
energy emitted in $1 \mathrm{~s}=1.1 \times 10^{14} \times 5.1 \times 1.6 \times 10^{-13}(\mathrm{~J}) \checkmark \quad(=90 \mathrm{~J})$
(b)(ii) $T_{1 / 2}=\frac{\ln 2}{\lambda}+$ correct use or $\lambda=\frac{\ln 2}{90 \times 365 \times 24 \times 3600}$

$$
=2.44 \times 10^{-10} \mathrm{~s}^{-1} \checkmark
$$

[or $\lambda=\frac{\ln 2}{90}=7.7 \times 10^{-3} \mathrm{yr}^{-1}$]
(b)(iii) no. of nuclei $\left(=\frac{\text { activity }}{\text { decay constant }}=\frac{11 \times 10^{14}}{2.44 \times 10^{-10}}\right)=4.5(1) \times 10^{23} \quad \checkmark$ (allow C.E. for incorrect value of λ in (ii))
$\begin{aligned} \text { mass of isotope } & =\frac{4.51 \times 10^{23} \times 0.239}{6.02 \times 10^{23}} \\ & =0.18 \mathrm{~kg} \checkmark\end{aligned}$
(allow C.E. for incorrect no. of nuclei)

4

(a)(i) area $=120 \times 10^{6}\left(\mathrm{~m}^{2}\right) \checkmark$
mass $=120 \times 10^{6} \times 10 \times 1100=1.3 \times 10^{12} \mathrm{~kg} \checkmark$
(ii) (use of $E_{\mathrm{p}}=m g h$ gives) $\Delta E_{\mathrm{p}}=1.3 \times 10^{12} \times 9.8 \times 5=6.4 \times 10^{13} \mathrm{~J} \checkmark$ (allow C.E. for incorrect value of mass from (i))
(a)(iii) power (from sea water) $=\frac{6.4 \times 10^{13}}{6 \times 3600} \checkmark$
[or correct use of $P=F v$]

$$
=3000(\mathrm{MW})
$$

(allow C.E. for incorrect value of ΔE_{p} from (ii))
power output $=3000 \times 0.4$

$$
\text { = } 120 \mathrm{MW}
$$

(allow C.E. for incorrect value of power)

5
(a)(i) initial acceleration/increase of speed reaches a constant speed/velocity acceleration decreases to become zero (at this speed)
(a)(ii) drag/frictional forces increases with speed
drag equal to weight (- upthrust) no resultant force at terminal speed [or balanced forces or forces cancel]
(b) column C 26.6
39.7
49.4 four values correct
75.2 all values correct and to 3 or 4 s.f.
118
173.5
(c)(i) column E
1.42
1.60
1.69 all values correct and to 3 or 4 s.f. \checkmark
1.88
2.07
2.24
(b)(ii) axes labelled and suitable scales chosen
at least 5 points plotted correctly
acceptable line
(d)(i) gradient $=\left((\right.$ e.g. $\left.) \frac{2.40-1.00}{0.7}\right)=2.0 \quad \checkmark$
$n=$ gradient $(=2)$
(d)(ii) intercept on y-axis $=\log k \checkmark$
intercept $=1.0 \checkmark$
$k\left(=10^{1.0}\right)=10 \checkmark$
units of k : for $n=2, \mathrm{~mm}^{-1} \mathrm{~s}^{-1}$

$$
\max (5)
$$

6(a)(i) volume of air is less with the powder present pressure $\alpha 1 /$ volume so pressure is greater
(a)(ii) initial volume $=3.5 \times 10^{-4}\left(\mathrm{~m}^{3}\right) \checkmark$
final volume $=2.5 \times 10^{-4}\left(\mathrm{~m}^{3}\right) \quad \checkmark$
final pressure $=\frac{100 \times 10^{3} \times 3.5 \times 10^{-4}}{2.5 \times 10^{-4}} \checkmark=140 \times 10^{3} \mathrm{~Pa} \checkmark$
[alternative: no.of moles $(n)\left(=\frac{p_{0} V_{0}}{R T_{0}}\right)=\frac{1.0 \times 10^{5} \times 3.5 \times 10^{-4}}{R T_{0}} \checkmark \checkmark$
final pressure $\left.\left(=\frac{n R T_{0}}{V_{1}}\right)=\frac{1.0 \times 10^{5} \times 3.5 \times 10^{-4}}{2.5 \times 10^{-4}} \checkmark=140 \mathrm{kPa} \quad \checkmark\right]$
(b)(i) volume of powder $\left(=\frac{\text { mass }}{\text { density }}=\frac{0.13}{2700}\right)=4.8 \times 10^{-5} \mathrm{~m}^{3} \checkmark$
(b)(ii) assuming powder volume as in (b)(i),
initial volume $=(3.5-0.48) \times 10^{-4}\left(\mathrm{~m}^{3}\right)$
final volume $=(2.5-0.48) \times 10^{-4}\left(\mathrm{~m}^{3}\right)$

$$
\begin{equation*}
\text { final pressure }=\frac{100 \times 10^{3} \times 3}{2}=150 \times 10^{3} \mathrm{~Pa} \tag{5}
\end{equation*}
$$

test successful as calculated final pressure $=$ measured final pressure

7
(a)(i) (in 1 s$), E=0.045 \times 4200 \times(47-15) \checkmark$

$$
=6050 \mathrm{~J} \checkmark
$$

(a)(ii) $P\left(=\frac{E}{t}\right)=6.0 \mathrm{~kW}$
(b)(i) (use of $P=V I$ gives) $I\left(=\frac{6050}{230}\right)=26 \mathrm{~A} \checkmark$
(allow C.E. for value of P from (a))
(b)(ii) radius $=1.2 \times 10^{-3}(\mathrm{~m}) \quad \checkmark$
cross-sectional area $=\pi\left(1.2 \times 10^{-3}\right)^{2}\left(\right.$ or $\left.4.5 \times 10^{-6}\left(\mathrm{~m}^{2}\right)\right)$

$$
\begin{aligned}
\frac{R}{l} & =\frac{\rho}{A} \checkmark \\
& =\frac{1.7 \times 10^{-8}}{4.5 \times 10^{-6}} \\
& =3.8 \times 10^{-3} \Omega \mathrm{~m}^{-1}
\end{aligned}
$$

(allow C.E. for value of A)
(b)(iii) $\frac{V}{l}\left(=\frac{I R}{l}=26 \times 3.8 \times 10^{-3}\right) \quad=0.1\left(\mathrm{~V} \mathrm{~m}^{-1}\right)($ per wire $)$
two wires per cable gives pd per metre $=2 \times 0.1 \checkmark\left(=0.20 \mathrm{~V} \mathrm{~m}^{-1}\right) \checkmark$
(iv) maximum length $\left(=\frac{6}{0.2}\right)=30 \mathrm{~m} \checkmark$

8
(a) $\quad m g=T \cos 6 \checkmark$
$F=T \sin 6$
hence $F=m g \tan 6 \checkmark$
[or correct use of triangle:
\checkmark for sides correct, \checkmark for $6^{\circ}, \checkmark$ for $\tan 6=F / m g$
or $F \Delta x=m g \Delta h, \quad \tan \theta=\frac{\Delta h}{\Delta x} \quad \tan 6^{\circ}=\frac{F}{m g}$
(b)(i) (use of $E=\frac{V}{d}$ gives) $E=\frac{4200}{60 \times 10^{-3}}=7.0 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1} \quad$
(ii) (use of $Q=\frac{F}{E}$ gives) $Q\left(=\frac{m g \tan 6}{E}\right)=\frac{2.1 \times 10^{-4} \times 9.8 \tan 6}{7 \times 10^{4}} \checkmark$

$$
\begin{equation*}
=3.1 \times 10^{-9} \mathrm{C} \tag{3}
\end{equation*}
$$

(allow C.E. for value of E from (i))

Quality of Written Communication (Q1(b) and Q6(a)(i) $\checkmark \checkmark$

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth \&t Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1H0
 Kathleen Tattersall: Director General

