

ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PA10

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

Unit 10

1
(a)(i)
$$r = 0.012 \text{ (m)} \checkmark$$

(use of $v = 2\pi f r$ gives) $v = 2\pi 50 \times 0.012 \checkmark$
 $= 3.8 \text{ m s}^{-1} \checkmark (3.77 \text{ m s}^{-1})$
(a)(ii) correct use of $a = \frac{v^2}{r}$ or $a = \frac{3.8^2}{0.012} \checkmark$
 $= 1.2 \times 10^3 \text{ m s}^{-2} \checkmark$
[or correct use of $\alpha = \omega^2 r$]
(allow C.E. for value of v from (i) (5)

(b) panel resonates
$$\checkmark$$

(because) motor frequency = natural frequency of panel \checkmark (2)
(7)

2

(a)(i) pd across resistor (= 3.0 - 2.2) = 0.8 (V)
$$\checkmark$$

(use of $V = IR$ gives) $R\left(=\frac{0.8}{0.035}\right) = 23 \ \Omega \checkmark$ (22.9 Ω)

(a)(ii) charge flow in 1 s = 0.035 (C)
$$\checkmark$$

no. of electrons (in 1 s) $\left(=\frac{0.035}{1.6 \times 10^{-19}}\right) = 2.2 \times 10^{17} \checkmark (2.19 \times 10^{17})$ (4)

(b)(i) (use of
$$E = hf = \frac{hc}{\lambda}$$
 gives) $E = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{635 \times 10^{-9}} \checkmark$
= 3.1(3) × 10⁻¹⁹ J ✓

(b)(ii) (use of
$$P = VI$$
 gives) $P (= 2.2 \times 0.035) = 0.077$ (W) \checkmark
[or use of $P = I^2 R$ with $R \left(= \frac{2.2}{0.035} \right) = 63$ (Ω)]
maximum no. of photons emitted per sec. $= \frac{0.077}{3.1 \times 10^{-19}}$
 $= 2.5 \times 10^{17} \checkmark (2.48 \times 10^{17})$
(allow C.E. for value of E from (i) and value of P from (ii)) (4)
(8)

3

(a)(i) (use of P = VI gives) $P (= 2.4 \times 20) = 48 \text{ W} \checkmark$

(a)(ii) incident (solar) power (=
$$1.4 \times 2.5$$
) = 3.5 (kW) \checkmark
efficiency = $\frac{48}{3500}$ \checkmark
= 0.014 \checkmark (or 1.4%)

[or efficiency = $\frac{48}{2.5}/1400$] (allow C.E. for incorrect values of input and output power)

(b)(i) in 1 s source emits 1.1×10^{14} particles \checkmark energy emitted in 1 s = $1.1 \times 10^{14} \times 5.1 \times 1.6 \times 10^{-13}$ (J) \checkmark (= 90 J)

(b)(ii)
$$T_{1/2} = \frac{\ln 2}{\lambda} + \text{correct use or } \lambda = \frac{\ln 2}{90 \times 365 \times 24 \times 3600} \checkmark$$

= 2.44 × 10⁻¹⁰ s⁻¹ ✓

[or
$$\lambda = \frac{\text{m2}}{90} = 7.7 \times 10^{-3} \text{ yr}^{-1}$$
]

(b)(iii) no. of nuclei
$$\left(= \frac{\text{activity}}{\text{decay constant}} = \frac{11 \times 10^{14}}{2.44 \times 10^{-10}} \right) = 4.5(1) \times 10^{23} \checkmark$$

(allow C.E. for incorrect value of λ in (ii))
mass of isotope $= \frac{4.51 \times 10^{23} \times 0.239}{6.02 \times 10^{23}} \checkmark$
 $= 0.18 \text{ kg} \checkmark$
(allow C.E. for incorrect no. of nuclei)

(a)(i) area =
$$120 \times 10^{6} \text{ (m}^{2}) \checkmark$$

mass = $120 \times 10^{6} \times 10 \times 1100 = 1.3 \times 10^{12} \text{ kg} \checkmark$

(ii) (use of $E_p = mgh$ gives) $\Delta E_p = 1.3 \times 10^{12} \times 9.8 \times 5 = 6.4 \times 10^{13}$ J \checkmark (allow C.E. for incorrect value of mass from (i))

(a)(iii) power (from sea water) =
$$\frac{6.4 \times 10^{13}}{6 \times 3600}$$

[or correct use of $P = Fv$]
= 3000 (MW) \checkmark
(allow C.E. for incorrect value of ΔE_p from (ii))
power output = 3000 × 0.4 \checkmark
= 120 MW \checkmark
(allow C.E. for incorrect value of power)

(7)
(7)

 $\frac{(7)}{(11)}$

(4)

5

- (a)(i) initial acceleration/increase of speed ✓ reaches a constant speed/velocity ✓ acceleration decreases to become zero (at this speed) ✓
- (a)(ii) drag/frictional forces increases with speed ✓
 drag equal to weight (- upthrust) ✓
 no resultant force at terminal speed
 [or balanced forces or forces cancel] ✓

 $_{\max}(5)$

www.theallpapers.com

(b)	column C 26.6 39.7 49.4 75.2 118 173.5	four values correct \checkmark all values correct and to 3 or 4 s.f. \checkmark	(2)
(c)(i)	column E 1.42 1.60 1.69 1.88 2.07 2.24	all values correct and to 3 or 4 s.f. \checkmark	

(d)(i) gradient =
$$\left((e.g.) \frac{2.40 - 1.00}{0.7} \right) = 2.0 \checkmark$$

 $n = \text{gradient} (= 2) \checkmark$

(d)(ii) intercept on y-axis = log
$$k \checkmark$$

intercept = 1.0 \checkmark
 $k (= 10^{1.0}) = 10 \checkmark$
units of k: for $n = 2$, mm⁻¹ s⁻¹ \checkmark

6(a)(i) volume of air is less with the powder present
$$\checkmark$$
 pressure α 1/volume so pressure is greater \checkmark

(a)(ii) initial volume = $3.5 \times 10^{-4} \text{ (m}^3) \checkmark$ final volume = $2.5 \times 10^{-4} \text{ (m}^3) \checkmark$ final pressure = $\frac{100 \times 10^3 \times 3.5 \times 10^{-4}}{2.5 \times 10^{-4}} \checkmark = 140 \times 10^3 \text{ Pa} \checkmark$ [alternative: no.of moles (n) (= $\frac{p_0 V_0}{RT_0}$) = $\frac{1.0 \times 10^5 \times 3.5 \times 10^{-4}}{RT_0} \checkmark$ final pressure $\left(=\frac{nRT_0}{V_1}\right) = \frac{1.0 \times 10^5 \times 3.5 \times 10^{-4}}{2.5 \times 10^{-4}} \checkmark = 140 \text{ kPa } \checkmark$] (6)

(b)(i) volume of powder
$$\left(=\frac{\text{mass}}{\text{density}}=\frac{0.13}{2700}\right)=4.8\times10^{-5} \text{ m}^3 \checkmark$$

(b)(ii) assuming powder volume as in (b)(i), initial volume = $(3.5 - 0.48) \times 10^{-4} \text{ (m}^3) \checkmark$ final volume = $(2.5 - 0.48) \times 10^{-4} \text{ (m}^3) \checkmark$ (4)

 $\max(5)$ (16)

final pressure =
$$\frac{100 \times 10^3 \times 3}{2} = 150 \times 10^3 \text{ Pa} \checkmark$$

test successful as calculated final pressure = measured final pressure \checkmark (5)
(11)

7
(a)(i) (in 1 s),
$$E = 0.045 \times 4200 \times (47 - 15) \checkmark$$

= 6050 J \checkmark

(a)(ii)
$$P\left(=\frac{E}{t}\right) = 6.0 \text{ kW } \checkmark$$
 (3)

(b)(i) (use of
$$P = VI$$
 gives) $I\left(=\frac{6050}{230}\right) = 26 \text{ A} \checkmark$ (26.3 A)
(allow C.E. for value of P from (a))

(b)(ii) radius =
$$1.2 \times 10^{-3}$$
 (m) \checkmark
cross-sectional area = $\pi (1.2 \times 10^{-3})^2$ (or 4.5×10^{-6} (m²)) \checkmark
 $\frac{R}{l} = \frac{\rho}{A} \checkmark$
 $= \frac{1.7 \times 10^{-8}}{4.5 \times 10^{-6}} \checkmark$
 $= 3.8 \times 10^{-3} \Omega \text{ m}^{-1} \checkmark$
(allow C.E. for value of A)

(b)(iii)
$$\frac{V}{l} \left(= \frac{IR}{l} = 26 \times 3.8 \times 10^{-3} \right) = 0.1 \text{ (V m}^{-1} \text{ (per wire)}$$

two wires per cable gives pd per metre = 2×0.1 \checkmark (= 0.20 V m⁻¹) \checkmark

(iv) maximum length
$$\left(=\frac{6}{0.2}\right) = 30 \text{ m} \checkmark$$
 (9)
(12)

(a) $mg = T \cos 6 \checkmark$ $F = T \sin 6 \checkmark$ hence $F = mg \tan 6 \checkmark$ [or correct use of triangle: \checkmark for sides correct, \checkmark for 6° , \checkmark for $\tan 6 = F/mg$ or $F\Delta x = mg \Delta h$, $\tan \theta = \frac{\Delta h}{\Delta x}$ $\tan 6^{\circ} = \frac{F}{mg}$ (3)

(b)(i) (use of
$$E = \frac{V}{d}$$
 gives) $E = \frac{4200}{60 \times 10^{-3}} = 7.0 \times 10^4 \text{ V m}^{-1} \checkmark$

(ii) (use of
$$Q = \frac{F}{E}$$
 gives) $Q \left(=\frac{mg \tan 6}{E}\right) = \frac{2.1 \times 10^{-4} \times 9.8 \tan 6}{7 \times 10^{4}} \checkmark$
= 3.1×10^{-9} C \checkmark
(allow C.E. for value of E from (i)) (3)
(6)

Quality of Written Communication (Q1(b) and Q6(a)(i) \checkmark (2)(2)(2)