General Certificate of Education
June 2007
Advanced Level Examination

PHYSICS (SPECIFICATION A)

PA04

Unit 4 Waves, Fields and Nuclear Energy

Section A

Thursday 14 June 2007 9.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this section is 30 .
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided on pages 3 and 4 . You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated Data Sheet is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

$$
\begin{aligned}
& \text { magnitude of induced emf }=N \frac{\Delta \Phi}{\Delta t} \\
& I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}} \\
& V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}
\end{aligned}
$$

Mechanical and Thermal Properties the Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }}=\frac{F}{A} \frac{l}{e}$
energy stored $=\frac{1}{2} \mathrm{Fe}$
$\Delta Q=m c \Delta \theta$
$\Delta Q=m l$
$p V=\frac{1}{3} N m c^{2}$
$\frac{1}{2} m \overline{c^{2}}=\frac{3}{2} k T=\frac{3 R T}{2 N_{\mathrm{A}}}$

Nuclear Physics and Turning Points in Physics
force $=\frac{e V_{\mathrm{p}}}{d}$
force $=$ Bev
radius of curvature $=\frac{m v}{B e}$
$\frac{e V}{d}=m g$
work done $=e \mathrm{~V}$
$F=6 \pi \eta r v$
$I=k \frac{I_{0}}{x^{2}}$
$\frac{\Delta N}{\Delta t}=-\lambda N$
$\lambda=\frac{h}{\sqrt{2 m e V}}$
$N=N_{0} \mathrm{e}^{-\lambda t}$
$T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$
$R=r_{0} A^{\frac{1}{3}}$

$$
\begin{aligned}
& E=m c^{2}=\frac{m_{0} c^{2}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}} \\
& l=l_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}} \\
& t=\frac{t_{0}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}
\end{aligned}
$$

Astrophysics and Medical

 Physics| Body | Mass $/ \mathrm{kg}$ | Mean radius $/ \mathrm{m}$ |
| :---: | :---: | :---: |
| | | |
| Sun | 2.00×10^{30} | 7.00×10^{8} |
| Earth | 6.00×10^{24} | 6.40×10^{6} |

1 astronomical unit $=1.50 \times 10^{11} \mathrm{~m}$
1 parsec $=206265 \mathrm{AU}=3.08 \times 10^{16} \mathrm{~m}=$ 3.26 ly

1 light year $=9.45 \times 10^{15} \mathrm{~m}$
Hubble constant $(H)=65 \mathrm{kms}^{-1} \mathrm{Mpc}^{-1}$

$$
M=\frac{\text { angle subtended by image at eye }}{\begin{array}{c}
\text { angle subtended by object at } \\
\text { unaided eye }
\end{array}}
$$

$$
M=\frac{f_{\mathrm{o}}}{f_{\mathrm{e}}}
$$

$$
m-M=5 \log \frac{d}{10}
$$

$$
\lambda_{\max } T=\text { constant }=0.0029 \mathrm{~m} \mathrm{~K}
$$

$$
v=H d
$$

$$
P=\sigma A T^{4}
$$

$$
\frac{\Delta f}{f}=\frac{v}{c}
$$

$$
\frac{\Delta \lambda}{\lambda}=-\frac{v}{c}
$$

$$
R_{\mathrm{s}}=\frac{2 G M}{c^{2}}
$$

Medical Physics
power $=\frac{1}{f}$
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$ and $m=\frac{v}{u}$
intensity level $=10 \log \frac{I}{I_{0}}$
$I=I_{0} \mathrm{e}^{-\mu x}$
$\mu_{\mathrm{m}}=\frac{\mu}{\rho}$

Electronics

Resistors
Preferred values for resistors (E24)
Series: 1.01 .11 .21 .31 .51 .61 .82 .02 .2
2.42 .73 .03 .33 .63 .94 .34 .75 .15 .66 .2
6.87 .58 .29 .1 ohms
and multiples that are ten times greater
$Z=\frac{V_{\text {rms }}}{I_{\text {rms }}}$
$\frac{1}{C_{\mathrm{T}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots$
$C_{\mathrm{T}}=C_{1}+C_{2}+C_{3}+\cdots$
$X_{\mathrm{C}}=\frac{1}{2 \pi f C}$

Alternating Currents

$f=\frac{1}{T}$

Operational amplifier

$G=\frac{V_{\text {out }}}{V_{\text {in }}} \quad$ voltage gain
$G=-\frac{R_{\mathrm{f}}}{R_{1}} \quad$ inverting
$G=1+\frac{R_{\mathrm{f}}}{R_{1}} \quad$ non-inverting
$V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right)$ summing

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

You are advised to spend approximately $\mathbf{3 0}$ minutes on this section.

1 The frequency of a body moving with simple harmonic motion is doubled. If the amplitude remains the same, which one of the following is also doubled?

A the time period
B the total energy
C the maximum velocity
D the maximum acceleration

2 Which one of the graphs, \mathbf{A} to \mathbf{D}, best shows how the displacement, x, of a damped oscillator that performs simple harmonic motion varies with time t ?

3 A wave motion has period T, frequency f, wavelength λ and speed c. Which one of the following equations is incorrect?

A $\quad T=\frac{c}{\lambda}$
B $\quad 1=T f$
C $\quad \lambda=\frac{c}{f}$
D $\quad T_{c}=\lambda$

4 In a transverse progressive wave of frequency 400 Hz , the least distance between two adjacent points which have a phase difference of $\frac{\pi}{2} \mathrm{rad}$ is 0.40 m . What is the speed of the wave?
A $\quad 160 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 320 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 640 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 1280 \mathrm{~m} \mathrm{~s}^{-1}$

5 In order to produce interference effects with visible light, coherent sources must be used. The waves produced by these sources do not need to have the same

A amplitude.
B frequency.
C wavelength.
D photon energy.

6 When a parallel beam of monochromatic light of wavelength λ is directed at two narrow slits, S_{1} and S_{2}, interference fringes are observed on a screen.

Which line, \mathbf{A} to \mathbf{D}, in the table gives the conditions for a dark fringe at point \mathbf{P} on the screen? (m in the table represents an integer.)

	path difference $\mathbf{S}_{\mathbf{2}} \mathbf{P}-\mathbf{S}_{\mathbf{1}} \mathbf{P}$	phase difference between waves at \mathbf{P}
\mathbf{A}	$m \lambda$	0
\mathbf{B}	$\left(m+\frac{1}{2}\right) \lambda$	180°
\mathbf{C}	$m \lambda$	180°
\mathbf{D}	$\left(m+\frac{1}{2}\right) \lambda$	0

7 Using a diffraction grating with light of wavelength 500 nm incident normally, a student found the second order diffracted maxima in a direction at 30° to the central bright fringe. What is the number of lines per metre on the grating?

A $\quad 2 \times 10^{4}$
B $\quad 2 \times 10^{5}$
C $\quad 4 \times 10^{5}$
D 5×10^{5}

8 A capacitor of capacitance $2500 \mu \mathrm{~F}$ is charged by a constant current of $200 \mu \mathrm{~A}$. What is the pd across the capacitor 25 s after starting to charge?

A $\quad 0.50 \mathrm{~V}$
B $\quad 1.0 \mathrm{~V}$
C $\quad 2.0 \mathrm{~V}$
D $\quad 4.0 \mathrm{~V}$

9

Switch S in the circuit is held in position 1, so that the capacitor C becomes fully charged to a pd V and stores energy E. The switch is then moved quickly to position 2 , allowing C to discharge through the fixed resistor R . It takes 36 ms for the pd across C to fall to $\frac{V}{2}$.
After the switch has been moved to position 2, how long does it take before the energy stored by C has fallen to $\frac{E}{16}$?

A $\quad 51 \mathrm{~ms}$
B $\quad 72 \mathrm{~ms}$
C $\quad 432 \mathrm{~ms}$
D 576 ms

10 A small mass is situated at a point on a line joining two large masses m_{1} and m_{2} such that it experiences no resultant gravitational force. If its distance from the centre of mass m_{1} is r_{1} and its distance from the centre of mass m_{2} is r_{2}, what is the value of the ratio $\frac{r_{1}}{r_{2}}$?

A $\frac{m_{1}{ }^{2}}{m_{2}{ }^{2}}$
B $\frac{m_{2}{ }^{2}}{m_{1}{ }^{2}}$
C $\sqrt{\frac{m_{1}}{m_{2}}}$
D $\sqrt{\frac{m_{2}}{m_{1}}}$

11 The Earth may be considered to be a uniform sphere of mass M and radius R. Which one of the following equations correctly relates the gravitational constant, G, with the acceleration due to gravity, g, at its surface?
A $G=\frac{M}{g R^{2}}$
B $\quad G=\frac{g M}{R^{2}}$
C $\quad G=\frac{R^{2}}{g M}$
D $G=\frac{g R^{2}}{M}$

12 What is the unit of gravitational potential?
A J
B Jkg^{-1}
C $\mathrm{m} \mathrm{s}^{-2}$
D $\quad \mathrm{Nkg}^{-1}$

13 The magnetic flux through a coil of 5 turns changes uniformly from $15 \times 10^{-3} \mathrm{~Wb}$ to $7.0 \times 10^{-3} \mathrm{~Wb}$ in 0.50 s . What is the emf induced in the coil due to this change in flux?

A $\quad 14 \mathrm{mV}$
B $\quad 16 \mathrm{mV}$
C $\quad 30 \mathrm{mV}$
D $\quad 80 \mathrm{mV}$

Three vertical tubes, made from copper, lead and rubber respectively, have identical dimensions. Identical, strong, cylindrical magnets \mathbf{P}, \mathbf{Q} and \mathbf{R} are released simultaneously from the same distance above each tube. Because of electromagnetic effects, the magnets emerge from the bottom of the tubes at different times.

Which line, \mathbf{A} to \mathbf{D}, in the table shows the correct order in which they will emerge?

$$
\begin{array}{ll}
\text { resistivity of copper } & =1.7 \times 10^{-8} \Omega \mathrm{~m} \\
\text { resistivity of lead } & =22 \times 10^{-8} \Omega \mathrm{~m} \\
\text { resistivity of rubber } & =50 \times 10^{13} \Omega \mathrm{~m}
\end{array}
$$

	emerges first	emerges second	emerges third
\mathbf{A}	\mathbf{P}	\mathbf{Q}	\mathbf{R}
\mathbf{B}	\mathbf{R}	\mathbf{P}	\mathbf{Q}
\mathbf{C}	\mathbf{R}	\mathbf{Q}	\mathbf{P}
\mathbf{D}	\mathbf{P}	\mathbf{R}	\mathbf{Q}

15

The graph shows how the binding energy per nucleon of a nucleus varies with nucleon number, A.
Which one of the following statements is not true?
A Energy is released in nuclear fission reactions from nuclei in region P .
B Nuclei in region Q are more stable than nuclei in region R.
C Nuclear fusion reactions bring nuclei closer to region Q.
D The binding energy per nucleon increases most significantly at lower nucleon numbers.

END OF SECTION A

There are no questions printed on this page

