General Certificate of Education
June 2006
Advanced Level Examination

PHYSICS (SPECIFICATION A)

PA04

Unit 4 Waves, Fields and Nuclear Energy

Section A

Thursday 15 June $2006 \quad 9.00$ am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed)

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this section is 30 .
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided on pages 3 and 4 . You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated Data Sheet is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Fundamental constants and values

Quantity		Symbol Value		Units
speed of light in vacuo permeability of free space permittivity of free space		c	3.00×10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
		μ_{0}	$4 \pi \times 10^{-7}$	$\mathrm{H} \mathrm{m}^{-1}$
		ε_{0}	8.85×10^{-12}	$\mathrm{F} \mathrm{m}^{-1}$
charge of electron		e	1.60×10^{-19}	C
the Planck constant		h	6.63×10^{-34}	
gravitational constant		G	6.67×10^{-11}	$\mathrm{N} \mathrm{m}{ }^{2} \mathrm{~kg}^{-2}$
the Avogadro constant molar gas constant		$N_{\text {A }}$	6.02×10^{23}	mol^{-1}
		R	8.31	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
the Boltzmann constant		k	1.38×10^{-23}	JK^{-1}
the Stefan constantthe Wien constant		σ	5.67×10^{-8}	W m ${ }^{-2} \mathrm{~K}^{-4}$
		α	2.90×10^{-3}	m K
electron rest mass （equivalent to $5.5 \times 10^{-4} \mathrm{u}$ ）		$m_{\text {e }}$	9.11×10^{-31}	kg
electron charge／mass ratio proton rest mass		$e / m_{\text {e }}$	1.76×10^{11}	$\mathrm{C} \mathrm{kg}^{-1}$
		m_{p}	1.67×10^{-27}	kg
（equivalent to 1.00728 u ） proton charge／mass ratio				
			9.58×10^{7}	$\mathrm{C} \mathrm{kg}^{-1}$
neutron rest mass（equivalent to 1.00867 u ）		m_{n}	1.67×10^{-27}	kg
gravitational field strength		g	9.81	$\mathrm{Nkg}{ }^{-1}$
acceleration due to gravity atomic mass unit		g	9.81	$\mathrm{m} \mathrm{s}^{-2}$
			1.661×10^{-27}	kg
$931.3 \mathrm{MeV})$	（ 1 u is equivalent to			
Fundamental particles				
Class	Name	Symbol Rest		Rest energy
				V
photon	photon	γ	0	
lepton	neutrino	$\nu_{\mathrm{c}} \quad 0$		
		$\nu_{\mu} \quad 0$		
	electron	$\mathrm{e}^{ \pm} \quad 0.5$		10999
	muon	$\mu^{ \pm} \quad 105$		． 659
mesons	pion	$\pi^{ \pm} \quad 13$		． 576
		π^{0}		．972
	kaon	$\mathrm{K}^{ \pm}$		． 821
		K^{0}		．762
baryons	proton	93		． 257
	neutron	93		． 551
Properties of quarks				
Type	Charge	Baryon St		trangeness
		number		
u	$+\frac{2}{3}$			0
d	$-\frac{1}{3}$			0
s	$-\frac{1}{3}$		3	－1

Geometrical equations

arc length $=r \theta$
circumference of circle $=2 \pi r$
area of circle $=\pi r^{2}$
area of cylinder $=2 \pi r h$
volume of cylinder $=\pi r^{2} h$
area of sphere $=4 \pi r^{2}$
volume of sphere $=\frac{4}{3} \pi r^{3}$

Mechanics and Applied
Physics
$v=u+a t$
$s=$
$s=u t+\frac{a t^{2}}{2}$
$v^{2}=u^{2}+2 a s$
$F=\frac{\Delta(m v)}{\Delta t}$
$P=F v$
efficiency $=\frac{\text { power output }}{\text { power input }}$
$\omega=\frac{\nu}{r}=2 \pi f$
$a=\frac{v^{2}}{r}=r \omega^{2}$
$I=\sum m r^{2}$
$E_{\mathrm{k}}=\frac{1}{2} I \omega^{2}$
$\omega_{2}=\omega_{1}+\alpha t$
$\theta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$
$\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta$
$\theta=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) t$
$T=I \alpha$
angular momentum $=I \omega$
$W=T \theta$
$P=T \omega$
angular impulse $=$ change of angular momentum $=T t$
$\Delta Q=\Delta U+\Delta W$
$\Delta W=p \Delta V$
$p V^{\gamma}=$ constant
work done per cycle $=$ area of loop
input power $=$ calorific
value \times fuel flow rate
indicated power as（area of $p-V$
loop）\times（no．of cycles $/$ s）\times
（no．of cylinders）
friction power $=$ indicated power－brake power
efficiency $=\frac{W}{Q_{\mathrm{in}}}=\frac{Q_{\mathrm{in}}-Q_{\text {out }}}{Q_{\mathrm{in}}}$
maximum possible
efficiency $=\frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}$

Fields，Waves，Quantum Phenomena
$g=\frac{F}{m}$
$g=-\frac{G M}{r^{2}}$
$g=-\frac{\Delta V}{\Delta x}$
$V=-\frac{G M}{r}$
$a=-(2 \pi f)^{2} x$
$v= \pm 2 \pi f \sqrt{A^{2}-x^{2}}$
$x=A \cos 2 \pi f t$
$T=2 \pi \sqrt{\frac{m}{k}}$
$T=2 \pi \sqrt{\frac{l}{g}}$
$\lambda=\frac{\omega s}{D}$
$d \sin \theta=n \lambda$
$\theta=\frac{\lambda}{D}$
${ }_{1} n_{2}=\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{c_{1}}{c_{2}}$
${ }_{1} n_{2}=\frac{n_{2}}{n_{1}}$
$\sin \theta_{\mathrm{c}}=\frac{1}{n}$
$E=h f$
$h f=\phi+E_{\mathrm{k}}$
$h f=E_{1}-E_{2}$
$\lambda=\frac{h}{p}=\frac{h}{m v}$
$c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$

Electricity

$\epsilon=\frac{E}{Q}$
$\epsilon=I(R+r)$
$\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$
$R_{\mathrm{T}}=R_{1}+R_{2}+R_{3}+\cdots$
$P=I^{2} R$
$E=\frac{F}{Q}=\frac{V}{d}$
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$
$E=\frac{1}{2} Q V$
$F=B l l$
$F=B Q v$
$Q=Q_{0} \mathrm{e}^{-t / R C}$

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

1 A mass M on a spring oscillates along a vertical line with the same period T as an object O in uniform circular motion in a vertical plane. When M is at its highest point, O is at its lowest point.

What is the least time interval between successive instants when the acceleration of M is exactly in the opposite direction to the acceleration of O ?
A $\frac{T}{4}$

B $\frac{T}{2}$
C $\frac{3 T}{4}$
D T

2 A particle of mass m oscillates with amplitude A at frequency f. What is the maximum kinetic energy of the particle?

A $\quad \frac{1}{2} \pi^{2} m f^{2} A^{2}$

B $\quad \pi^{2} m f^{2} A^{2}$

C $2 \pi^{2} m f^{2} A^{2}$

D $4 \pi^{2} m f^{2} A^{2}$

3 The sound quality of a portable radio is improved by adjusting the orientation of the aerial. Which statement is a correct explanation of this improvement?

A The radio waves from the transmitter are polarised.
B The radio waves from the transmitter are unpolarised.
C The radio waves become polarised as a result of adjusting the aerial.
D The radio waves become unpolarised as a result of adjusting the aerial.

4 A microwave transmitter is used to direct microwaves of wavelength 30 mm along a line XY . A metal plate is positioned at right angles to XY with its mid-point on the line, as shown.

When a detector is moved gradually along XY, its reading alternates between maxima and minima. Which one of the following statements is not correct?

A The distance between two minima could be 15 mm .
B The distance between two maxima could be 30 mm .
C The distance between a minimum and a maximum could be 30 mm .
D The distance between a minimum and a maximum could be 37.5 mm .

5

In a double slit system used to produce interference fringes, the separation of the slits is s and the width of each slit is x. L is a source of monochromatic light. Which one of the following changes would decrease the separation of the fringes seen on the screen?

A moving the screen closer to the double slits
B decreasing the width, x, of each slit, but keeping s constant
C decreasing the separation, s, of the slits
D exchanging L for a monochromatic source of longer wavelength

6

The diagram above shows the first four diffraction orders each side of the zero order when a beam of monochromatic light is incident normally on a diffraction grating of slit separation d. All the angles of diffraction are small. Which one of the patterns, \mathbf{A} to \mathbf{D}, drawn on the same scale, is obtained when the grating is exchanged for one with a slit separation $\frac{d}{2}$?

A

B

C

D

7 A $1000 \mu \mathrm{~F}$ capacitor, initially uncharged, is charged by a steady current of $50 \mu \mathrm{~A}$. How long will it take for the potential difference across the capacitor to reach 2.5 V ?

A $\quad 20 \mathrm{~s}$
B $\quad 50 \mathrm{~s}$
C $\quad 100 \mathrm{~s}$
D $\quad 400 \mathrm{~s}$

8 In experiments to pass a very high current through a gas, a bank of capacitors of total capacitance $50 \mu \mathrm{~F}$ is charged to 30 kV . If the bank of capacitors could be discharged completely in 5.0 ms what would be the mean power delivered?

A $\quad 22 \mathrm{~kW}$
B $\quad 110 \mathrm{~kW}$
C $\quad 4.5 \mathrm{MW}$
D $\quad 9.0 \mathrm{MW}$

9 For a particle moving in a circle with uniform speed, which one of the following statements is correct?

A The displacement of the particle is in the direction of the force.
B The force on the particle is in the same direction as the direction of motion of the particle.
C The momentum of the particle is constant.
D The kinetic energy of the particle is constant.

10 Which one of the following graphs correctly shows the relationship between the gravitational force, F, between two masses and their separation r.

11 When at the surface of the Earth, a satellite has weight W and gravitational potential energy $-U$. It is projected into a circular orbit whose radius is equal to twice the radius of the Earth. Which line, \mathbf{A} to \mathbf{D}, in the table shows correctly what happens to the weight of the satellite and to its gravitational potential energy?

	weight	gravitational potential energy
A	becomes $\frac{W}{2}$	increases by $\frac{U}{2}$
B	becomes $\frac{W}{4}$	increases by $\frac{U}{2}$
C	remains W	increases by U
D	becomes $\frac{W}{4}$	increases by U

12 Two protons are $1.0 \times 10^{-14} \mathrm{~m}$ apart. Approximately how many times is the electrostatic force between them greater than the gravitational force between them?

A $\quad 10^{23}$

B $\quad 10^{30}$

C $\quad 10^{36}$

D $\quad 10^{42}$

13 Particles of mass m carrying a charge Q travel in a circular path of radius r in a magnetic field of flux density B with a speed v. How many of the following quantities, if changed one at a time, would change the radius of the path?

- m
- Q
- B
- v

A one
B two
C three
D four

14 In the reaction shown, a proton and a deuterium nucleus, ${ }_{1}^{2} \mathrm{H}$, fuse together to form a helium nucleus, ${ }_{2}^{3} \mathrm{He}$

$$
{ }_{1}^{1} \mathrm{p}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\mathrm{Q}
$$

What is the value of Q , the energy released in this reaction?

$$
\begin{aligned}
& \text { mass of a proton }=1.00728 \mathrm{u} \\
& \text { mass of a }{ }_{1}^{2} \mathrm{H} \text { nucleus }=2.01355 \mathrm{u} \\
& \text { mass of a }{ }_{2}^{3} \mathrm{He} \text { nucleus }=3.01493 \mathrm{u}
\end{aligned}
$$

A $\quad 5.0 \mathrm{MeV}$
B $\quad 5.5 \mathrm{MeV}$
C $\quad 6.0 \mathrm{MeV}$
D $\quad 6.5 \mathrm{MeV}$

15 For a nuclear reactor in which the fission rate is constant, which one of the following statements is correct?

A There is a critical mass of fuel in the reactor.
B For every fission event, there is, on average, one further fission event.
C A single neutron is released in every fission event.
D No neutrons escape from the reactor.

END OF SECTION A

There are no questions printed on this page

