General Certificate of Education June 2006 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

PA04

Section A

Thursday 15 June 2006 9.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed)

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book **not** on the answer sheet.

Information

- The maximum mark for this section is 30.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Fundamental	constants a	and valu	ues			Mechanics and Applied	Fields, Waves, Quantum
Quantity		Symbol	Value		Units	Physics	Phenomena
speed of light i	n vacuo	c	3.00×10^{8}		$m s^{-1}$	v = u + at	F
permeability of free space		μ_0	$4\pi \times 10^{-7}$		$H m^{-1}$	$s = \left(\frac{u+v}{v}\right)t$	$g = \frac{1}{m}$
charge of electron		ϵ_0	0.85×10^{-19} 1.60 × 10 ⁻¹⁹		rm C		$g = -\frac{GM}{GM}$
the Planck constant		h	6.63×10^{-34}		Js	a_{1} at^{2}	r^2
gravitational constant		G	6.67×10^{-11}		$N m^2 kg^{-2}$	$s = ut + \frac{u}{2}$	ΔV
the Avogadro constant		N _A	$A = \begin{bmatrix} 6.02 \times 10^{23} \\ 0.21 \end{bmatrix}$		mol ⁻¹	$v^2 = u^2 + 2as$	$g = -\frac{1}{\Delta x}$
the Boltzmann constant			1.38×10^{-23}		JK'mol'		CM
the Stefan constant		σ	5.67×10^{-8}		$W m^{-2} K^{-4}$	$F = \frac{\Delta(m\nu)}{\Delta t}$	$V = -\frac{OM}{r}$
the Wien constant		α	2.90×10^{-3}		m K		$a = -(2\pi t)^2 x$
electron rest mass		m _e	9.11 \times 10 ⁻³¹		kg	P = Fv	
(equivalent to 5.5×10^{-4} u)			1.76 + 1011		C 1- a-1	$efficiency = \frac{power output}{power output}$	$v = \pm 2\pi f \mathrm{V} A^2 - x^2$
electron charge/mass ratio		e/m _e	e/m_e 1.76 × 10 ⁻ m 1.67 × 10 ⁻		C Kg - ka	power input	$x = A \cos 2\pi f t$
(equivalent to 1.00728u)		///p	$m_{\rm p}$ 1.07 × 10		мБ	V 2-6	$T = 2\pi\sqrt{\frac{m}{m}}$
proton charge/mass ratio		$e/m_{\rm p} = 9.58 \times 10^{\circ}$			C kg ⁻¹	$\omega = \frac{1}{r} = 2\pi f$	$1 - 2m \sqrt{k}$
neutron rest mass		$m_{\rm n}$ 1.67 × 10 ⁻		27	kg	<i>u</i> ²	$T = 2\pi \sqrt{\frac{l}{\alpha}}$
(equivalent to 1.00867u)		a	a 0.81		N ka ⁻¹	$a = \frac{v}{r} = r\omega^2$	¥8
acceleration du	ie to gravity	8 g	g 9.81		$m s^{-2}$		$\lambda = \frac{\omega s}{D}$
atomic mass unit		u	1.661 × 10		kg	$I = \sum mr^2$	$d\sin\theta = n^2$
(1u is equivale	nt to					_ 1 _ 2	$u \sin \theta = n \lambda$
931.3 MeV)		I				$E_{\rm k} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$
Fundamental particles						$\omega_2 = \omega_1 + \alpha t$	$n_2 = \frac{\sin \theta_1}{1} = \frac{c_1}{1}$
Class Name		Sumbol		Ra	t anaray	0 + 1 + 1 + 2	$\sin \theta_2 c_2$
		Syn	ibbi Re		si energy	$b = \omega_1 i + \frac{1}{2} \alpha i$	$n_1 n_2 = \frac{n_2}{n_2}$
.1 . 4 .	1.4			/MeV		$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	$\cdot - n_1$
photon	photon	γ	0				$\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino	v _c		0		$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$	F - hf
	$v_{\mu} = 0$		05	10000	$T = I\alpha$	E = hy $hf = \phi + E_1$	
	muon	υ±		105	5 659		$hf = E_1 - E_2$
mesons	nion	μ π [±]		139 576		angular momentum = $I\omega$. h h
	π^0 134.972 kaon K [±] 493.821		.972	$W = I \theta$ $P = T \omega$	$\lambda = \frac{n}{p} = \frac{n}{mv}$		
			3.821		1		
		K^0		497	7.762	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
baryons	proton	р		938	3.257	angular momentum = Tt	
	neutron	n		939	9.551	$\Delta Q = \Delta O + \Delta W$ $\Delta W = p \Delta V$	Electricity
						$pV^{\gamma} = \text{constant}$	E
Properties of quarks							$\epsilon = \frac{1}{Q}$
Type	Type Charge Barvon		von	Strangeness		work done per cycle = area $of loop$	$\epsilon = I(R+r)$
	0	nun	nber		Ģ	0,000	
	<u>2</u>		1		0	input power = calorific	$\frac{1}{P} = \frac{1}{P} + \frac{1}{P} + \frac{1}{P} + \cdots$
u	+ 3	+	3		0	value \times fuel flow rate	$R_{\mathrm{T}} = R_1 + R_2 + R_3 + \cdots$
d	$-\frac{1}{3}$	+	$\frac{1}{3}$		0	indicated power as (area of $n - V$	
S	$-\frac{1}{3}$	+-	$\frac{1}{3}$		-1	loop) × (no. of cycles/s) ×	$P = I^2 R$
Geometrical	aquations					(no. of cylinders)	$E = \frac{F}{Q} = \frac{V}{d}$
Geometricar	equations					friction power = indicated	1 0
$arc\ length = r\theta$						power – brake power	$E = \frac{1}{4\pi\epsilon_0} \frac{\mathcal{L}}{r^2}$
<i>circumference of circle</i> = $2\pi r$							
area of circle = πr^2						efficiency = $\frac{w}{\Omega_{\rm in}} = \frac{Q_{\rm in} - Q_{\rm out}}{\Omega_{\rm in}}$	$E = \frac{1}{2} QV$
area of cylinder = $2\pi rh$						Lin Lin	F = BIl
volume of cylinder = $\pi r^2 h$						maximum possible	F = BQv
area of sphere	$=4\pi r^2$					$T_{\rm H} - T_{\rm C}$	$Q = Q_0 e^{-t/RC}$
<i>volume of sphere</i> = $\frac{4}{3}\pi r^3$						$e_{JJICIENCY} = \frac{1}{T_{\rm H}}$	wheallnaners com
roman of sphere = 3 m						~~~~	

4

l

t

1

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$ $E = mc^2 = \frac{m_0 c^2}{l}$ $I_{\rm rms} = \frac{I_0}{\sqrt{2}}$ $V_{\rm rms} = \frac{V_0}{\sqrt{2}}$ **Mechanical and Thermal Properties** the Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$ energy stored = $\frac{1}{2}$ Fe $\Delta Q = mc \Delta \theta$ $\Delta Q = ml$ $pV = \frac{1}{3} Nmc^2$ $\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$ **Nuclear Physics and Turning Points in Physics** force = $\frac{eV_{\rm p}}{d}$ force = Bevradius of curvature = $\frac{mv}{Be}$ $\frac{eV}{d} = mg$ work done = eV $F = 6\pi\eta rv$ $I = k \frac{I_0}{x^2}$ $\frac{\Delta N}{\Delta t} = -\lambda N$ $\lambda = \frac{h}{\sqrt{2meV}}$ $N = N_0 \mathrm{e}^{-\lambda t}$ $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ $R = r_0 A^{\frac{1}{3}}$

$$\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$
Astrophysics and Medical Physics
Body Mass/kg Mean radius/m
Sun 2.00 × 10³⁰ 7.00 × 10⁸
Earth 6.00 × 10²⁴ 6.40 × 10⁶
1 astronomical unit = 1.50 × 10¹¹ m
1 parsec = 206265 AU = 3.08 × 10¹⁶ m = 3.26 ly
1 light year = 9.45 × 10¹⁵ m
Hubble constant (H) = 65 km s⁻¹ Mpc⁻¹

$$M = \frac{\text{angle subtended by image at eye}{\text{angle subtended by object at}}$$

$$M = \frac{f_0}{f_c}$$

$$m - M = 5 \log \frac{d}{10}$$

$$\lambda_{max}T = \text{constant} = 0.0029 \text{ m K}$$

$$v = Hd$$

$$P = \sigma AT^4$$

$$\frac{\Delta f}{f} = \frac{v}{c}$$

$$R_s = \frac{2GM}{c^2}$$

Medical Physics $power = \frac{1}{f}$ $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ and $m = \frac{v}{u}$ intensity level = $10 \log \frac{I}{I_0}$ $I = I_0 e^{-\mu x}$ $\mu_{\rm m} = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\rm T} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi f C}$$

Alternating Currents

 $f = \frac{1}{T}$

Operational amplifier

 $G = \frac{V_{\text{out}}}{V_{\text{in}}}$ voltage gain $G = -\frac{R_{\rm f}}{R_{\rm 1}}$ inverting $G = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$ non-inverting $V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \text{ summing}$

www.theallpapers.com

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

1 A mass M on a spring oscillates along a vertical line with the same period *T* as an object O in uniform circular motion in a vertical plane. When M is at its highest point, O is at its lowest point.

What is the least time interval between successive instants when the acceleration of M is exactly in the opposite direction to the acceleration of O?

- $\mathbf{A} \quad \frac{T}{4}$ $\mathbf{B} \quad \frac{T}{2}$ $\mathbf{a} \quad \frac{3T}{4}$
- **D** *T*

4

С

- 2 A particle of mass *m* oscillates with amplitude *A* at frequency *f*. What is the maximum kinetic energy of the particle?
 - $\mathbf{A} \qquad \frac{1}{2} \pi^2 m f^2 A^2$
 - **B** $\pi^2 m f^2 A^2$
 - $\mathbf{C} \qquad 2\,\pi^2\,mf^2A^2$
 - $\mathbf{D} \quad 4\pi^2 m f^2 A^2$

- **3** The sound quality of a portable radio is improved by adjusting the orientation of the aerial. Which statement is a correct explanation of this improvement?
 - A The radio waves from the transmitter are polarised.
 - **B** The radio waves from the transmitter are unpolarised.
 - **C** The radio waves become polarised as a result of adjusting the aerial.
 - **D** The radio waves become unpolarised as a result of adjusting the aerial.
- 4 A microwave transmitter is used to direct microwaves of wavelength 30 mm along a line XY. A metal plate is positioned at right angles to XY with its mid-point on the line, as shown.

When a detector is moved gradually along XY, its reading alternates between maxima and minima. Which one of the following statements is **not** correct?

- A The distance between two minima could be 15 mm.
- **B** The distance between two maxima could be 30 mm.
- **C** The distance between a minimum and a maximum could be 30 mm.
- **D** The distance between a minimum and a maximum could be 37.5 mm.

In a double slit system used to produce interference fringes, the separation of the slits is s and the width of each slit is x. L is a source of monochromatic light. Which one of the following changes would **decrease** the separation of the fringes seen on the screen?

- A moving the screen closer to the double slits
- **B** decreasing the width, *x*, of each slit, but keeping *s* constant
- **C** decreasing the separation, *s*, of the slits
- **D** exchanging L for a monochromatic source of longer wavelength

7

The diagram above shows the first four diffraction orders each side of the zero order when a beam of monochromatic light is incident normally on a diffraction grating of slit separation *d*. All the angles of diffraction are small. Which one of the patterns, **A** to **D**, drawn on the same scale, is obtained when the grating is exchanged for one with a slit separation $\frac{d}{2}$?

8

6

- 7 A 1000 μ F capacitor, initially uncharged, is charged by a steady current of 50 μ A. How long will it take for the potential difference across the capacitor to reach 2.5 V?
 - A 20 s
 - **B** 50 s
 - C 100 s
 - **D** 400 s
- 8 In experiments to pass a very high current through a gas, a bank of capacitors of total capacitance $50 \,\mu\text{F}$ is charged to $30 \,\text{kV}$. If the bank of capacitors could be discharged completely in 5.0 ms what would be the mean power delivered?
 - A 22 kW
 - **B** 110 kW
 - C 4.5 MW
 - **D** 9.0 MW
- **9** For a particle moving in a circle with uniform speed, which **one** of the following statements is correct?
 - A The displacement of the particle is in the direction of the force.
 - **B** The force on the particle is in the same direction as the direction of motion of the particle.
 - **C** The momentum of the particle is constant.
 - **D** The kinetic energy of the particle is constant.
- 10 Which one of the following graphs correctly shows the relationship between the gravitational force, F, between two masses and their separation r.

11 When at the surface of the Earth, a satellite has weight W and gravitational potential energy -U. It is projected into a circular orbit whose radius is equal to twice the radius of the Earth. Which line, **A** to **D**, in the table shows correctly what happens to the weight of the satellite and to its gravitational potential energy?

	weight	gravitational potential energy
А	becomes $\frac{W}{2}$	increases by $\frac{U}{2}$
В	becomes $\frac{W}{4}$	increases by $\frac{U}{2}$
С	remains W	increases by U
D	becomes $\frac{W}{4}$	increases by U

- 12 Two protons are 1.0×10^{-14} m apart. Approximately how many times is the electrostatic force between them greater than the gravitational force between them?
 - A 10^{23}
 - **B** 10^{30}
 - $C = 10^{36}$
 - **D** 10^{42}
- 13 Particles of mass m carrying a charge Q travel in a circular path of radius r in a magnetic field of flux density B with a speed v. How many of the following quantities, if changed one at a time, would change the radius of the path?
 - *m*
 - Q
 - *B*
 - *v*
 - A one
 - **B** two
 - C three
 - **D** four

14 In the reaction shown, a proton and a deuterium nucleus, ${}_{1}^{2}$ H, fuse together to form a helium nucleus, ${}_{2}^{3}$ He

 $^{1}_{1}p + ^{2}_{1}H \longrightarrow ^{3}_{2}He + Q$

What is the value of Q, the energy released in this reaction?

mass of a proton $= 1.00728 \,\mathrm{u}$

mass of a 2_1 H nucleus = 2.01355 u

mass of a ${}^{3}_{2}$ He nucleus = 3.01493 u

- A 5.0 MeV
- **B** 5.5 MeV
- C 6.0 MeV
- **D** 6.5 MeV
- **15** For a nuclear reactor in which the fission rate is constant, which one of the following statements is correct?
 - A There is a critical mass of fuel in the reactor.
 - **B** For every fission event, there is, on average, one further fission event.
 - **C** A single neutron is released in every fission event.
 - **D** No neutrons escape from the reactor.

END OF SECTION A

There are no questions printed on this page