General Certificate of Education June 2005 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

PA04

Section A

Thursday 16 June 2005 Morning Session

In addition to this paper you will require:

- an objective test answer sheet;
 - a black ball-point pen;
 - a calculator;
 - a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, **not** on the answer sheet.

Information

- The maximum mark for this Section is 30.
- Section A and Section B of this paper together carry 15% of the total marks for Physics Advanced.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

volume of cylinder = $\pi r^2 h$

volume of sphere = $\frac{4}{3}\pi r^3$

area of sphere = $4\pi r^2$

Fundamental constants and values					Mechanics and Applied	Fields, Waves, Quantum
Quantity Symbol Value Units			Units	Physics	Phenomena	
speed of light in vacuo permeability of free space permittivity of free space charge of electron the Planck constant gravitational constant the Avogadro constant molar gas constant the Boltzmann constant the Boltzmann constant the Stefan constant electron rest mass (equivalent to 5.5×10^{-4} u) electron charge/mass ratio proton rest mass (equivalent to 1.00728 u) proton charge/mass ratio neutron rest mass (equivalent to 1.00867 u)		c μ_0 ε_0 e h G N_A R k σ α m_e e/m_e m_p e/m_p m_n	$\begin{array}{c} 3.00 \times 10^8 \\ 4\pi \times 10^{-7} \\ 8.85 \times 10^{-11} \\ 1.60 \times 10^{-11} \\ 6.63 \times 10^{-3} \\ 6.67 \times 10^{-1} \\ 6.02 \times 10^{23} \\ 8.31 \\ 1.38 \times 10^{-22} \\ 5.67 \times 10^{-8} \\ 2.90 \times 10^{-3} \\ 9.11 \times 10^{-3} \\ 1.76 \times 10^{11} \\ 1.67 \times 10^{-22} \\ 9.58 \times 10^7 \\ 1.67 \times 10^{-22} \end{array}$	$ \begin{array}{c} m s^{-1} \\ H m^{-1} \\ F m^{-1} \\ C \\ J s \\ N m^{2} kg \\ mol^{-1} \\ J K^{-1} mc \\ J K^{-1} mc \\ J K^{-1} \\ W m^{-2} K \\ m K \\ kg \\ \end{array} $	$v = u + at$ $s = \left(\frac{u+v}{2}\right)t$ $s = ut + \frac{at^{2}}{2}$ $r^{-1} v^{2} = u^{2} + 2as$ $F = \frac{\Delta(mv)}{\Delta t}$ $P = Fv$ $efficiency = \frac{power \ output}{power \ input}$ $\omega = \frac{v}{r} = 2\pi f$ $a = \frac{v^{2}}{r} = r\omega^{2}$	$g = \frac{F}{m}$ $g = -\frac{GM}{r^{2}}$ $g = -\frac{\Delta V}{\Delta x}$ $V = -\frac{GM}{r}$ $a = -(2\pi f)^{2}x$ $v = \pm 2\pi f \sqrt{A^{2} - x^{2}}$ $x = A \cos 2\pi f t$ $T = 2\pi \sqrt{\frac{m}{k}}$ $T = 2\pi \sqrt{\frac{I}{g}}$
gravitational field strength acceleration due to gravity atomic mass unit (1u is equivalent to 931.3 MeV)		8 8 u	9.81 9.81 1.661 × 10	27 N kg ⁻¹ m s ⁻² kg	$I = \sum r r^{2}$ $E_{k} = \frac{1}{2} I \omega^{2}$	$\lambda = \frac{\omega s}{D}$ $d \sin \theta = n\lambda$ $\theta \approx \frac{\lambda}{D}$
Fundamental	particles				$\omega_2 = \omega_1 + \alpha t$	$_1n_2 = \frac{\sin \theta_1}{\sin \theta} = \frac{c_1}{c_1}$
Class	Name	Syn	Symbol Rest energy		$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$\sin \theta_2 c_2$ ${}_1n_2 = \frac{n_2}{n_1}$
photon lepton	photon neutrino	γ ν _e	1))	$\omega_2^2 = \omega_1^2 + 2\alpha\theta$ $\theta = \frac{1}{2}(\omega_1 + \omega_2)t$	$\sin \theta_{\rm c} = \frac{1}{n}$
	electron	v_{μ} e^{\pm})).510999 105 659	$T = I\alpha$	E = hf $hf = \phi + E_{k}$ $hf = E_{1} - E_{2}$
mesons	pion	μ π^{\pm} π^{0}		139.576 134.972	angular momentum = $I\omega$ $W = T\theta$ $P = T\omega$	$\lambda = \frac{h}{p} = \frac{h}{mv}$
baryons	kaon proton	K ⁻ K ⁰ p		493.821 497.762 938.257	angular impulse = change of angular momentum = Tt	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
	neutron	n	1	939.551	$\Delta W = p\Delta V$ pV'' = constant	<i>E</i>
Properties of <i>Type</i>	Properties of quarks Type Charge Baryon number		Strangeness	work done per cycle = area of loop	$\epsilon = \frac{1}{Q}$ $\epsilon = I(R+r)$ $1 1 1 1$	
u	$+\frac{2}{3}$	+	$\frac{1}{3}$	0	input power = calorific value × fuel flow rate	$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm 2}} + \frac{1}{R_{\rm 3}} + \cdots$ $R_{\rm T} = R_{\rm 1} + R_{\rm 2} + R_{\rm 3} + \cdots$
d	$-\frac{1}{3}$	+	± 3	0	indicated power as (area of $p - V$	$\mathbf{n}_1 = \mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_3 + \mathbf{n}_4 + \mathbf{n}_5 + \mathbf$
s $-\frac{1}{3}$ $+\frac{1}{3}$ -1			-1	$loop) \times (no. of cycles/s) \times (no. of cylinders)$	$P = FR$ $E = \frac{F}{Q} = \frac{V}{d}$	
and low-st	- 1				friction power = indicated	$E = \begin{pmatrix} 1 & Q \end{pmatrix}$
$arc \ iength = r\theta$	of circle - 2 4	r			power – brake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2}$
area of circle -	πr^2	1			$efficiency = \frac{W}{W} = \frac{Q_{in} - Q_{out}}{Q_{out}}$	$E = \frac{1}{2} OV$
area of cylinde	$r = 2\pi rh$				$Q_{\rm in}$ $Q_{\rm in}$	F = BIl

maximum possible

 $efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$

F = BQv $Q = Q_0 e^{-t/RC}$

www.theallpapers.comover

3

 $E = mc^2$

 $l = l_0 \left(1 \right)$

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$

Mechanical and Thermal

the Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$

 $I_{\rm rms} = \frac{I_0}{\sqrt{2}}$

 $V_{\rm rms} = \frac{V_0}{\sqrt{2}}$

Properties

 $\Delta Q = mc \Delta \theta$

 $pV = \frac{1}{3} Nm \overline{c^2}$

 $\Delta Q = ml$

energy stored = $\frac{1}{2}$ Fe

 $\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$

Points in Physics

radius of curvature = $\frac{mv}{Be}$

force = $\frac{eV_{\rm p}}{d}$

force = Bev

 $\frac{eV}{d} = mg$

 $F = 6\pi \eta r v$

 $I = k \frac{I_0}{x^2}$

 $\frac{\Delta N}{\Delta t} = -\lambda N$

 $\lambda = \frac{h}{\sqrt{2meV}}$

 $N = N_0 \mathrm{e}^{-\lambda t}$

 $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$

 $R = r_0 A^{\frac{1}{3}}$

work done = eV

Nuclear Physics and Turning

$$E = mc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$$

$$l = l_{0} \left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}$$

$$t = \frac{t_{0}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$$
Astrophysics and Medical Physics
Body Mass/kg Mean radiu
Sun 2.00 × 10³⁰ 7.00 × 10
Earth 6.00 × 10²⁴ 6.40 × 10
1 astronomical unit = 1.50 × 10¹¹ m
1 parsec = 206265 AU = 3.08 × 10¹⁶ m
1 light year = 9.45 × 10¹⁵ m
Hubble constant (H) = 65 km s⁻¹ Mp
$$M = \frac{\text{angle subtended by image at e}}{\text{angle subtended by object at unaided eye}}$$

$$M = \frac{f_{0}}{f_{c}}$$

$$m - M = 5 \log \frac{d}{10}$$

$$\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$$

$$v = Hd$$

Astroph **Physics**

Body	Mass/kg	<i>Mean radius/</i> m					
Sun	2.00×10^{30}	7.00×10^8					
Earth	6.00×10^{24}	6.40×10^{6}					
1 astronomical unit = 1.50×10^{11} m							

1 parsec m = 3.26 ly

1 light ye

 \mathbf{v}^{-1} Hubble of

> eye an .t

M = ---- $M = \frac{f_{\rm o}}{f_{\rm e}}$ m - M = $\lambda_{\max}T = 0$ v = Hd $P = \sigma A T^4$ $\frac{\Delta f}{f} = \frac{\nu}{c}$ $\frac{\Delta\lambda}{\lambda} = -\frac{\nu}{c}$ $R_{\rm s} \approx \frac{2GM}{c^2}$

Medical Physics $power = \frac{1}{f}$ $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ and $m = \frac{v}{u}$ *intensity level* = $10 \log \frac{I}{I_0}$ $I = I_0 e^{-\mu x}$ $\mu_{\rm m} = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater $Z = \frac{V_{\rm rms}}{2}$

$$I_{\rm rms} = \frac{1}{C_{\rm T}} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\rm T} = C_1 + C_2 + C_3 + \cdots$$

 $X_{\rm C} = \frac{1}{2\pi fC}$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

 $G = \frac{V_{\text{out}}}{V_{\text{in}}}$ voltage gain $G = -\frac{R_{\rm f}}{R_{\rm 1}}$ inverting $G = 1 + \frac{R_{\rm f}}{R_1}$ non-inverting $V_{\text{out}} = -R_{\text{f}}\left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}\right)$ summing

www.theallpapers.com

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

You are advised to spend approximately 30 minutes on this section.

- 1 A spring is suspended from a fixed point. A mass attached to the spring is set into vertical undamped simple harmonic motion. When the mass is at its lowest position, which one of the following has its minimum value?
 - **A** the potential energy of the system
 - **B** the kinetic energy of the mass
 - **C** the acceleration of the mass
 - **D** the tension in the spring
- 2 The time period of a simple pendulum is doubled when the length of the pendulum is increased by 3.0 m. What is the original length of the pendulum?
 - A 1.0 m
 - **B** 1.5 m
 - C 3.0 m
 - **D** 6.0 m
- 3 The diagram shows a snapshot of a wave on a rope travelling from left to right.

At the instant shown, point **P** is at maximum displacement and point **Q** is at zero displacement. Which one of the following lines, **A** to **D**, in the table correctly describes the motion of **P** and **Q** in the next half-cycle?

	Р	Q
Α	falls then rises	rises
В	falls then rises	rises then falls
С	falls	falls
D	falls	rises then falls

- 4 The speed of sound in water is 1500 m s⁻¹. For a sound wave in water having frequency 2500 Hz, what is the minimum distance between two points at which the vibrations are $\frac{\pi}{2}$ rad out of phase?
 - A 0.05 m
 - **B** 0.10 m
 - C 0.15 m
 - **D** 0.20 m
- 5 Which one of the following properties of light waves do polarising sunglasses depend on for their action?

Light waves may

- A interfere constructively.
- **B** interfere destructively.
- **C** be polarised when reflected from a surface.
- **D** be polarised by the lens in the eye.
- 6 Light of wavelength λ is incident normally on a diffraction grating for which adjacent lines are a distance 3λ apart. What is the angle between the second order maximum and the straight-through position?
 - A 9.6°
 - **B** 20°
 - C 42°
 - **D** There is no second order maximum.
- 7 The Earth has density ρ and radius *R*. The gravitational field strength at the surface is *g*. What is the gravitational field strength at the surface of a planet of density 2ρ and radius 2R?
 - $\begin{array}{c} \mathbf{A} \quad g \\ \mathbf{p} \quad \mathbf{q} \end{array}$
 - \mathbf{B} 2g
 - $C \qquad 4g$
 - **D** 16*g*
- 8 A particle of mass m moves in a circle of radius r at uniform speed, taking time T for each revolution. What is the kinetic energy of the particle?

$$\mathbf{A} \qquad \frac{\pi^2 m r}{T^2}$$
$$\mathbf{B} \qquad \frac{\pi^2 m r^2}{T^2}$$
$$\mathbf{C} \qquad \frac{2\pi^2 m r^2}{T}$$

$$\mathbf{D} \qquad \frac{2\pi^2 m r^2}{T^2}$$

9 Two protons, each of mass *m* and charge *e*, are a distance *d* apart. Which one of the following expressions correctly gives the ratio (electrostatic force) for the forces acting between them?

correctly gives the ratio	gravitational force	for the forces acting between them?
	(-)	

A
$$\frac{4\pi\varepsilon_0 e^2}{Gm^2}$$

B
$$\frac{Ge^2}{4\pi\varepsilon_0 m^2}$$

C
$$\frac{e^2m^2}{4\pi\varepsilon_0 G}$$

$$\mathbf{D} \qquad \frac{e^2}{4\pi\varepsilon_0 Gm^2}$$

10 The graph shows how the gravitational potential, V, varies with the distance, r, from the centre of the Earth.

What does the gradient of the graph at any point represent?

- A the magnitude of the gravitational field strength at that point
- **B** the magnitude of the gravitational constant
- C the mass of the Earth
- **D** the potential energy at the point where the gradient is measured

The diagram shows two charges, $+4\,\mu\text{C}$ and $-16\,\mu\text{C}$, 120 mm apart. What is the distance from the $+4\,\mu\text{C}$ charge to the point between the two charges, where the resultant electric potential is zero?

A 24 mm

11

- **B** 40 mm
- C 80 mm
- **D** 96 mm
- 12 An electron travelling at constant speed enters a uniform electric field at right angles to the field. While the electron is in the field it accelerates in a direction which is
 - A in the same direction as the electric field.
 - **B** in the opposite direction to the electric field.
 - **C** in the same direction as the motion of the electron.
 - **D** in the opposite direction to the motion of the electron.
- 13 A 1000 μ F capacitor and a 10 μ F capacitor are charged so that the potential difference across each of them is the same. The charge stored in the 1000 μ F capacitor is Q_1 and the charge stored in the 10 μ F capacitor is Q_2 .

What is the ratio $\frac{Q_1}{Q_2}$?

- A 100
- **B** 10
- **C** 1
- **D** $\frac{1}{100}$
- 14 Which one of the following statements is **not** true about the control rods used in a nuclear reactor?
 - A They must absorb neutrons.
 - **B** They must slow down neutrons to thermal speeds.
 - **C** They must retain their shape at high temperatures.
 - **D** The length of rod in the reactor must be variable.

8

15 The magnetic flux, Φ , through a coil varies with time, *t*, as shown by the first graph. Which one of the following graphs, **A** to **D**, best represents how the magnitude, ε , of the induced emf varies in this same period of time?

END OF SECTION A

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE