GCE

Physics A

Unit PA04

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

[^0]
Section A

Key to Objective Test Questions

1-A; 2-B; 3-A; 4-B; 5-A; 6-B; 7-A; 8-A; 9-D; 10-C; 11-C; 12-D; 13-A; 14-C; 15-D.

Section B

1
(a) interference or superposition reflection from metal plate two waves of the same frequency/wavelength travelling in opposite directions (or forward/reflected waves) maxima where waves are in phase or interfere constructively \checkmark minima where waves are out of phase/antiphase or interfere destructively nodes and antinodes or stationary waves identified \checkmark

$$
\max (4)
$$

(b)(i) $\quad\left(\right.$ distance between minima $\left.=\frac{\lambda}{2}\right)$

$$
\left(\frac{\lambda}{2}=\frac{144}{9} \text { gives }\right) \lambda=32.0 \mathrm{~mm} \checkmark
$$

(b)(ii) $c=f \lambda$ and $c=3 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$

$$
f=\frac{3 \times 10^{8}}{32 \times 10^{-3}}=9.38 \times 10^{9} \mathrm{~Hz}
$$

(allow C.E. for value of λ from (i))

2
(a) period $=24$ hours or equals period of Earth's rotation remains in fixed position relative to surface of Earth equatorial orbit
same angular speed as Earth or equatorial surface \checkmark
(b)(i) $\frac{G M m}{r^{2}}=m \omega^{2} r \quad \checkmark$
$T=\frac{2 \pi}{\omega} \quad \checkmark$
$r\left(=\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3}=\left(\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times(24 \times 3600)^{2}}{4 \pi^{2}}\right)^{1 / 3} \quad \checkmark$
(gives $r=42.3 \times 10^{3} \mathrm{~km}$)
(b)(ii) $\quad \Delta V=G M\left(\frac{1}{R}-\frac{1}{r}\right)$
$=6.67 \times 10^{-11} \times 6 \times 10^{24} \times\left(\frac{1}{6.4 \times 10^{6}}-\frac{1}{4.23 \times 10^{7}}\right)=5.31 \times 10^{7}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right) \checkmark$
$\Delta E_{\mathrm{p}}=m \Delta V\left(=750 \times 5.31 \times 10^{7}\right)=3.98 \times 10^{10} \mathrm{~J} \checkmark$
(allow C.E. for value of ΔV)
[alternatives:
calculation of $\frac{G M}{R}\left(6.25 \times 10^{7}\right)$ or $\frac{G M}{r}\left(9.46 \times 10^{6}\right)^{\checkmark}$
or calculation of $\frac{G M m}{R}\left(4.69 \times 10^{10}\right)$ or $\frac{G M m}{r}\left(7.10 \times 10^{9}\right)$
calculation of both potential energy values
subtraction of values or use of $m \Delta V$ with correct answer \checkmark]

3
(a) units: F - newton (N), B - tesla (T) or weber metre ${ }^{-2}\left(\mathrm{~Wb} \mathrm{~m}^{-2}\right)$,

$$
I \text { - ampere (A), } l \text {-metre (m) } \checkmark
$$

condition: I must be perpendicular to $B \quad \checkmark$
(b)(i) mass of bar, $m=\left(25 \times 10^{-3}\right)^{2} \times 8900 \times l \checkmark(=5.56 l)$
weight of bar $(=m g)=54.6 l$
$m g=B I l$ or weight $=$ magnetic force
$54.6 l=B \times 65 \times l$ gives $B=0.840 \mathrm{~T} \checkmark$
(b)(ii) arrow in correct direction (at right angles to I, in plane of bar) \checkmark

4

(a) mass difference increases
or B.E. (per nucleon) or stability is greater for nucleus after fusion \checkmark (greater) mass difference
or increase in B.E. (per nucleon) implies energy released
both nuclei charged positively or have like charges
electrostatic repulsion
(b)(i) $\quad \Delta m(=2 \times(2.01355)-(3.01493+1.00867))$

$$
=3.5 \times 10^{-3} \mathrm{u} \checkmark \quad\left(5.81 \times 10^{-30} \mathrm{~kg}\right)
$$

(b)(ii) $\Delta E=3.5 \times 10^{-3} \times 931.3(\mathrm{MeV}) \checkmark \quad(=3.26 \mathrm{MeV})$

$$
\begin{equation*}
=3.26 \times 10^{6} \times 1.6 \times 10^{-19}=5.22 \times 10^{-13}(\mathrm{~J}) \tag{3}
\end{equation*}
$$

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth \&t Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1H0
 Kathleen Tattersall: Director General

