

ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PA04

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

Section A

Key to Objective Test Questions

1-A; 2-B; 3-A; 4-B; 5-A; 6-B; 7-A; 8-A; 9-D; 10-C; 11-C; 12-D; 13-A; 14-C; 15-D.

Section B

1	

 (a) interference or superposition ✓ reflection from metal plate ✓ two waves of the same frequency/wavelength ✓ travelling in opposite directions (or forward/reflected waves) ✓ maxima where waves are in phase or interfere constructively ✓ minima where waves are out of phase/antiphase or interfere destructively ✓ nodes and antinodes or stationary waves identified ✓

(b)(i) (distance between minima =
$$\frac{\lambda}{2}$$
)
 $\left(\frac{\lambda}{2} = \frac{144}{9}$ gives) $\lambda = 32.0$ mm \checkmark

(b)(ii)
$$c = f\lambda$$
 and $c = 3 \times 10^8 \text{ (m s}^{-1}) \checkmark$
 $f = \frac{3 \times 10^8}{32 \times 10^{-3}} = 9.38 \times 10^9 \text{ Hz} \checkmark$
(allow C.E. for value of λ from (i)) (3)
(7)

2

(a) period = 24 hours or equals period of Earth's rotation ✓ remains in fixed position relative to surface of Earth ✓ equatorial orbit ✓ same angular speed as Earth or equatorial surface ✓ max(2)

(b)(i)
$$\frac{GMm}{r^2} = m\omega^2 r \checkmark$$

 $T = \frac{2\pi}{\omega} \checkmark$
 $r \left(= \frac{GMT^2}{4\pi^2} \right)^{1/3} = \left(\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times (24 \times 3600)^2}{4\pi^2} \right)^{1/3} \checkmark$

(gives $r = 42.3 \times 10^3$ km)

(b)(ii)
$$\Delta V = GM\left(\frac{1}{R} - \frac{1}{r}\right) \checkmark$$

$$= 6.67 \times 10^{-11} \times 6 \times 10^{24} \times \left(\frac{1}{6.4 \times 10^6} - \frac{1}{4.23 \times 10^7}\right) = 5.31 \times 10^7 \text{ (J kg}^{-1}) \checkmark$$

$$\Delta E_p = m\Delta V (= 750 \times 5.31 \times 10^7) = 3.98 \times 10^{10} \text{ J} \checkmark$$
(allow C.E. for value of ΔV)

[alternatives:

calculation of $\frac{GM}{R}$ (6.25 × 10 ⁷) or $\frac{GM}{r}$ (9.46 × 10 ⁶) \checkmark	
or calculation of $\frac{GMm}{R}$ (4.69 × 10 ¹⁰) or $\frac{GMm}{r}$ (7.10× 10 ⁹)	
calculation of both potential energy values \checkmark	
subtraction of values or use of $m\Delta V$ with correct answer \checkmark]	<u>(6)</u>
	<u>(8)</u>

3

(a)	units: F - newton (N), B - tesla (T) or weber metre ^{-2} (Wb m ^{-2}),	
	I - ampere (A), l - metre (m) \checkmark	
	condition: I must be perpendicular to $B \checkmark$	(2)

(b)(i) mass of bar,
$$m = (25 \times 10^{-3})^2 \times 8900 \times l \checkmark$$
 (= 5.56*l*)
weight of bar (= *mg*) = 54.6*l* ✓
mg = *BIl* or weight = magnetic force ✓
54.6*l* = $B \times 65 \times l$ gives $B = 0.840$ T ✓

(b)(ii) arrow in correct direction (at right angles to *I*, in plane of bar) \checkmark (5) (7)

4

(a)	 mass difference increases or B.E. (per nucleon) or stability is greater for nucleus after fusion ✓ (greater) mass difference or increase in B.E. (per nucleon) implies energy released ✓ both nuclei charged positively or have like charges ✓ electrostatic repulsion ✓ 	_{max} (3)
(b)(i)	$\Delta m (= 2 \times (2.01355) - (3.01493 + 1.00867))$ = 3.5 × 10 ⁻³ u ✓ (5.81 × 10 ⁻³⁰ kg)	
(b)(ii)	$\Delta E = 3.5 \times 10^{-3} \times 931.3 \text{ (MeV)} \checkmark (= 3.26 \text{ MeV})$ = 3.26 × 10 ⁶ × 1.6 × 10 ⁻¹⁹ = 5.22 × 10 ⁻¹³ (J) ✓	<u>(3)</u> (6)

Quality of Written Communication (Q1(a) and Q4(a)) \checkmark (2)