General Certificate of Education

January 2007
Advanced Level Examination

PHYSICS (SPECIFICATION A)

PA04
Unit 4 Waves, Fields and Nuclear Energy

Section A

Monday 22 January $2007 \quad 9.00$ am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this section is 30 .
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided on pages 3 and 4 . You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated Data Sheet is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Fundamental constants and values

Geometrical equations

arc length $=r \theta$
circumference of circle $=2 \pi r$
area of circle $=\pi r^{2}$
area of cylinder $=2 \pi r h$
volume of cylinder $=\pi r^{2} h$
area of sphere $=4 \pi r^{2}$
volume of sphere $=\frac{4}{3} \pi r^{3}$

Mechanics and Applied
Physics
$v=u+a t$
${ }^{s}$
$s=u t+\frac{a t^{2}}{2}$
$v^{2}=u^{2}+2 a s$
$F=\frac{\Delta(m v)}{\Delta t}$
$P=F v$
efficiency $=\frac{\text { power output }}{\text { power input }}$
$\omega=\frac{\nu}{r}=2 \pi f$
$a=\frac{v^{2}}{r}=r \omega^{2}$
$I=\sum m r^{2}$
$E_{\mathrm{k}}=\frac{1}{2} I \omega^{2}$
θ
$\theta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$
$\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta$
$\theta=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) t$
$T=I \alpha$
angular momentum $=I \omega$
$W=T \theta$
$P=T \omega$
angular impulse $=$ change of angular momentum $=T t$
$\Delta Q=\Delta U+\Delta W$
$\Delta W=p \Delta V$
$p V^{\gamma}=$ constant
work done per cycle $=$ area of loop
input power $=$ calorific
value \times fuel flow rate
indicated power as（area of $p-V$
loop $) \times($ no．of cycles $/$ s $) \times$
（no．of cylinders）
friction power $=$ indicated power－brake power
efficiency $=\frac{W}{Q_{\mathrm{in}}}=\frac{Q_{\mathrm{in}}-Q_{\text {out }}}{Q_{\mathrm{in}}}$
maximum possible
efficiency $=\frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}$

Fields，Waves，Quantum Phenomena
$g=\frac{F}{m}$
$g=-\frac{G M}{r^{2}}$
$g=-\frac{\Delta V}{\Delta x}$
$V=-\frac{G M}{r}$
$a=-(2 \pi f)^{2} x$
$v= \pm 2 \pi f \sqrt{A^{2}-x^{2}}$
$x=A \cos 2 \pi f t$
$T=2 \pi \sqrt{\frac{m}{k}}$
$T=2 \pi \sqrt{\frac{l}{g}}$
$\lambda=\frac{\omega s}{D}$
$d \sin \theta=n \lambda$
$\theta=\frac{\lambda}{D}$
${ }_{1} n_{2}=\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{c_{1}}{c_{2}}$
${ }_{1} n_{2}=\frac{n_{2}}{n_{1}}$
$\sin \theta_{\mathrm{c}}=\frac{1}{n}$
$E=h f$
$h f=\phi+E_{\mathrm{k}}$
$h f=E_{1}-E_{2}$
$\lambda=\frac{h}{p}=\frac{h}{m v}$
$c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$

Electricity

$\epsilon=\frac{E}{Q}$
$\epsilon=I(R+r)$
$\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$
$R_{\mathrm{T}}=R_{1}+R_{2}+R_{3}+\cdots$
$P=I^{2} R$
$E=\frac{F}{Q}=\frac{V}{d}$
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$
$E=\frac{1}{2} Q V$
$F=B I l$
$F=B Q v$
$Q=Q_{0} \mathrm{e}^{-t / R C}$

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case. You are advised to spend about $\mathbf{3 0}$ minutes on this section.

1 A particle oscillates with undamped simple harmonic motion. Which one of the following statements about the acceleration of the oscillating particle is true?

A It is least when the speed is greatest.
B It is always in the opposite direction to its velocity.
C It is proportional to the frequency.
D It decreases as the potential energy increases.

2 A simple pendulum and a mass-spring system both have the same time period T at the surface of the Earth. If taken to another planet where the acceleration due to gravity is twice that on Earth, which line, \mathbf{A} to \mathbf{D}, in the table gives the correct new periods?

	simple pendulum	mass-spring
A	$T \sqrt{2}$	$\frac{T}{\sqrt{2}}$
B	$\frac{T}{\sqrt{2}}$	T
C	$T \sqrt{2}$	T
D	$\frac{T}{\sqrt{2}}$	$T \sqrt{2}$

3 A particle of mass 0.20 kg moves with simple harmonic motion of amplitude $2.0 \times 10^{-2} \mathrm{~m}$. If the total energy of the particle is $4.0 \times 10^{-5} \mathrm{~J}$, what is the time period of the motion?

A $\quad \frac{\pi}{4}$ seconds

B $\quad \frac{\pi}{2}$ seconds

C $\quad \pi$ seconds

D 2π seconds

4 A loudspeaker produces sound waves in air of wavelength 0.68 m and speed $340 \mathrm{~m} \mathrm{~s}^{-1}$. How many cycles of vibration does the loudspeaker diaphragm make in 10 ms ?
$\begin{array}{rr}\text { A } & 5 \\ \text { B } & 10 \\ \text { C } & 50 \\ \text { D } & 100\end{array}$

5 Two long pipes produce stationary waves at their fundamental frequency. Pipe X, of length l, is closed at one end. Pipe Y, which is open at both ends, produces vibrations of the same frequency as pipe X . What is the length of pipe Y ?

A $\frac{l}{4}$
B $\quad \frac{l}{2}$

C $2 l$

D $4 l$

6 How many of the following four equations correctly represent the energy E stored by a capacitor of capacitance C when it is charged to a pd V and its charge is Q ?

$$
E=\frac{1}{2} \frac{Q^{2}}{C} \quad E=\frac{1}{2} \frac{C}{V^{2}} \quad E=\frac{1}{2} Q C \quad E=\frac{1}{2} C V^{2}
$$

A one
B two
C three
D four

7 A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500Ω resistor from an initial pd of 6.0 V . The datalogger is capable of recording 1000 readings in 10 s . Which line, \mathbf{A} to \mathbf{D}, in the table gives the pd and the number of readings made after a time equal to the time constant of the discharge circuit?

	potential difference/V	number of readings
A	2.2	50
B	3.8	50
C	2.2	500
D	3.8	500

8 The relationship between two physical quantities may be inverse, inverse square or exponential. Which line, \mathbf{A} to \mathbf{D}, in the table shows correct relationships for
(i) pd and time in capacitor discharge,
(ii) electric field strength and distance in a radial field, and
(iii) gravitational potential and distance in a radial field?

	(i) capacitor discharge	(ii) electric field strength	(iii) gravitational potential
A	exponential	inverse	inverse square
B	inverse	inverse square	exponential
C	inverse square	exponential	inverse
D	exponential	inverse square	inverse

9 For a particle moving in a circle with uniform speed, which one of the following statements is incorrect?

A The velocity of the particle is constant.
B The force on the particle is always perpendicular to the velocity of the particle.
C There is no displacement of the particle in the direction of the force.
D The kinetic energy of the particle is constant.

10 What is the angular speed of a car wheel of diameter 0.400 m when the speed of the car is $108 \mathrm{~km} \mathrm{~h}^{-1}$?

A $\quad 75 \mathrm{rad} \mathrm{s}^{-1}$
B $\quad 150 \mathrm{rads} \mathrm{s}^{-1}$
C $\quad 270 \mathrm{rads}^{-1}$
D $\quad 540 \mathrm{rads}^{-1}$

11

The diagram shows a charged oil drop of weight $m g$, which is stationary in the electric field between two parallel plates. If the potential difference between the plates is V and the separation of the plates is d, what is the charge on the oil drop?

A $-\frac{V d}{m g}$
B $-\frac{V}{m g d}$

C $-m g V d$

D $-\frac{m g d}{V}$

12

The diagram shows a square coil PQRS placed in a uniform magnetic field with the plane of the coil parallel to the lines of magnetic field. A constant current is passed round the coil in the direction shown, causing a force to act on side PS of the coil. Which one of the following statements about the forces acting on the other sides of the coil is correct?

A A force acts on each of the other sides of the coil.
B No force acts on sides PQ and RS of the coil.
C A force acts on side RS and an equal and opposite force to this force acts on side PQ .
D A force acts on side QR in the same direction as the force that acts on PS.

13 Which one of the following is not a unit of magnetic flux?
A $\quad \mathrm{Nm} \mathrm{A}^{-1}$
B $\quad \mathrm{Wb}$
C $\quad \mathrm{Tm}^{2}$
D Vs^{-1}

14 The output power of a nuclear reactor is provided by nuclear fuel which decreases in mass at a rate of $4 \times 10^{-6} \mathrm{~kg}$ per hour. What is the maximum possible output power of the reactor?

A $\quad 28 \mathrm{~kW}$
B $\quad 50 \mathrm{MW}$
C 100 MW
D 200 MW

15 Which one of the following statements concerning a thermal nuclear reactor containing uranium is correct?

If the amount of fissile material in the reactor exceeds the critical mass, the fission reactions
A can be controlled by a suitable absorber of neutrons.
B can be controlled by a suitable moderating material.
C can be controlled if the coolant flows at a fast rate.
D cannot be controlled.

END OF SECTION A

There are no questions printed on this page

There are no questions printed on this page

