General Certificate of Education January 2007 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

PA04

Section A

Monday 22 January 2007 9.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book **not** on the answer sheet.

Information

- The maximum mark for this section is 30.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

Fundamental constants and values						Mechanics and Applied	Fields, Waves, Quantum
Quantity Symbol			l Value I		Units	Physics	Phenomena
speed of light in vacuo permeability of free space μ_0 $4\pi \times$		3.00×10^{8} $4\pi \times 10^{-7}$	$ \begin{array}{c ccccc} 0^{8} & m \ s^{-1} \\ -7 & H \ m^{-1} \\ 0^{-12} & \pi & -1 \end{array} $		v = u + at $s = (u + v) t$	$g = \frac{F}{m}$	
permittivity of free space charge of electron		ε_0	8.85×10^{-12} 1.60 × 10^{-19}		F m ⁻¹	$\left(\frac{3}{2}\right)^{l}$	$g = -\frac{GM}{GM}$
the Planck constant		h	6.63×10^{-34}		Js	$s = ut + \frac{at^2}{2}$	r^2
gravitational constant		G	6.67×10^{-11}		$N m^2 kg^{-2}$	2	$g = -\frac{\Delta V}{\Delta V}$
molar gas cons	stant	$\begin{bmatrix} N_{A} \\ R \end{bmatrix}$	8.31		$J K^{-1} mol^{-1}$	$v^2 = u^2 + 2as$	Δx
the Boltzmann	n constant	k	1.38×10^{-23}		$J K^{-1}$	$E - \frac{\Delta(m\nu)}{m}$	$V = -\frac{GM}{T}$
the Stefan con	stant tant	σ	5.67×10^{-6} 2 90 × 10^{-3}		W m ⁻² K ⁻⁷ m K	$T = \frac{1}{\Delta t}$	r $(2-t)^2$
electron rest n	nass	m_{e}	9.11×10^{-31}		kg	P = F v	$a = -(2\pi f)^{*}x$
(equivalent to	5.5×10^{-4} u)	alm	1.76×10^{11}	1	$C k a^{-1}$	efficiency = <u>power output</u>	$v = \pm 2\pi f \sqrt{A^2 - x^2}$
proton rest ma	ass	$m_{\rm n}$	1.70×10^{-2} 1.67 × 10 ⁻²	27	kg	power input	$x = A \cos 2\pi f t$
(equivalent to	1.00728u)		0.50 407			$\omega = -\frac{\nu}{2} = 2\pi f$	$T = 2\pi \sqrt{\frac{m}{L}}$
proton charge	mass ratio	e/m_p	$/m_{\rm p} = 9.58 \times 10^{7}$		C kg ⁻¹	r	$T \rightarrow \overline{I}$
(equivalent to	1.00867u)	, mn	1.07 × 10			$a = \frac{v^2}{r\omega^2} = r\omega^2$	$T = 2\pi \sqrt{\frac{r}{g}}$
gravitational f	ield strength	g	9.81		N kg ⁻¹ m s ⁻²	r	$\lambda = \frac{\omega s}{D}$
atomic mass u	nit	u u	1.661×10	-27	kg	$I = \sum mr^2$	D doin 0 m ²
(1u is equivale	ent to					r 1, 2	$a \sin \theta = n\lambda$
931.3 MeV)		I		I		$E_{\rm k} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$
Fundamenta	l particles					$\omega_2 = \omega_1 + \alpha t$	$_{1}n_{2} = \frac{\sin\theta_{1}}{\sin\theta_{2}} = \frac{c_{1}}{c_{2}}$
Class	Name	Syn	Symbol Re		t energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$n_{0} = \frac{n_{2}}{n_{1}}$
1	1.			/Me	eV	$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	$n_{1}^{n_{2}} - n_{1}$
photon	photon	Ŷ		0			$\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino	ν _e ν		0		$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$	E = hf
	electron	e^{\pm}		0.51	0999	$T = I\alpha$	$hf = \phi + E_{\rm k}$
	muon	μ^{\pm}		105	.659	angular momentum = $I\omega$	$hf = E_1 - E_2$
mesons	pion	π^{\star}		139	.576	$W = T\theta$	$\lambda = \frac{h}{h} = \frac{h}{m}$
	kaon	π° V±		134	.972	$P = T\omega$	p mv
	каоп	к К ⁰		495	.621	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
baryons	proton	р		938	.257	angular momentum = Tt	100
-	neutron	n		939	.551	$\Delta Q = \Delta U + \Delta W$ $\Delta W = p \Delta V$	Electricity
						$pV^{\gamma} = \text{constant}$	c - E
Properties of	fquarks					work done per cycle – area	$c = \frac{1}{Q}$
Туре	Type Charge Baryon Str		Stra	ingeness	of loop	$\epsilon = I(R+r)$	
	2	11011	1			input power = calorific	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \cdots$
u	+ 5/3	+	- 1	$\frac{1}{3}$ 0		value × fuel flow rate	$\begin{array}{cccc} R_{\mathrm{T}} & R_{1} & R_{2} & R_{3} \\ R_{-} - R_{1} + R_{-} + R_{-} + \dots \end{array}$
d	$-\frac{1}{3}$	+	$-\frac{1}{3}$	$\frac{1}{3}$ 0		indicated power as (area of $n - V$	$r_{\rm T} = r_1 + r_2 + r_3 + \cdots$
S	$-\frac{1}{3}$	+	$-\frac{1}{3}$		-1	$loop) \times (no. of cycles/s) \times (no. of cycles)$	$P = I^2 R$
Geometrical equations				(no. of cylinders)	$E = \frac{1}{Q} = \frac{1}{d}$		
$arc \ length = r\theta$						power – brake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
circumference of circle = $2\pi r$						W = O = O	
area of circle = πr^2						$efficiency = \frac{r}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$	$E = \frac{1}{2} QV$
area of cylinder = $2\pi rh$						~ ~	F = BIl
volume of cylinder = $\pi r^2 h$						maximum possible	F = BQv
area of sphere = $4\pi r^2$						$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T}$	$Q = Q_0 \mathrm{e}^{-t/RC}$
<i>volume of sphere</i> $= \frac{4}{3} \pi r^3$							v ^a theallpapers.com

magnitude of induced emf = $N \frac{\Delta \Phi}{\Delta t}$	<i>E</i> = <i>m</i> c
$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$,
$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$	$l = l_0$
W2	$t = \frac{1}{\int_{1}^{1} dt}$
Mechanical and Thermal Properties	
the Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$	
energy stored = $\frac{1}{2}$ Fe	Astroj Physic
$\Delta Q = mc \Delta \theta$	Bod
$\Delta Q = ml$ $nV - \frac{1}{2} Nmc^2$	Sun
$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N}$	Eart
21 'A	1 astro
Nuclear Physics and Turning Points in Physics	1 parse 3.26 I
eV_{n}	1 light
$force = \frac{d}{d}$	Hubble
force = Bev	
radius of curvature = $\frac{mv}{Be}$	<i>M</i> = —
$\frac{eV}{d} = mg$	$M = -\frac{f_0}{f_0}$
work done = eV	$f_{\rm e}$
$F = 6\pi\eta r\nu$	m – M
$I = k \frac{I_0}{x^2}$	$\lambda_{\max}T =$
$\frac{\Delta N}{\Delta t} = -\lambda \ N$	v = Hd $P = \sigma A$
$\lambda = \frac{h}{\sqrt{2meV}}$	$\frac{\Delta f}{f} = \frac{\nu}{c}$
$N = N_0 \mathrm{e}^{-\lambda t}$	Δλ
$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$	$\frac{1}{\lambda} = -$
$R = r_0 A^{\frac{1}{3}}$	$R_{\rm s} \approx -$
	l

$nc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$					
$\left(1-\frac{\nu^2}{c^2}\right)^{\frac{1}{2}}$					
$\frac{t_0}{1-\frac{v^2}{c^2}}\right)^{\frac{1}{2}}$					
ophysics and Medical ics					
dy Mass/kg Mean radius/m					
$\ln 2.00 \times 10^{30} 7.00 \times 10^{8}$					
rth 6.00×10^{24} 6.40×10^{3}					
conomical unit = 1.50×10^{11} m					
sec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} =$ 6 ly					
it year = 9.45×10^{15} m					
ble constant (H) = 65 km s ⁻¹ Mpc ⁻¹					
angle subtended by image at eye					
angle subtended by object at unaided eye					
$\frac{f_{o}}{f_{c}}$					
$M = 5 \log \frac{d}{10}$					
r = constant = 0.0029 m K					
ld					
σAT^{4}					
$\frac{v}{c}$					
$-\frac{\nu}{c}$					
$\frac{2GM}{c^2}$					

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

$$intensity \ level = 10 \ \log \frac{I}{I_0}$$

$$I = I_0 e^{-\mu x}$$

$$\mu_m = \frac{\mu}{\rho}$$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

 $\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$ $C_{\rm T} = C_1 + C_2 + C_3 + \cdots$ $X_{\rm C} = \frac{1}{2\pi f C}$

Alternating Currents $f = \frac{1}{T}$

Operational amplifier

 $G = \frac{V_{\text{out}}}{V_{\text{in}}} \quad \text{voltage gain}$ $G = -\frac{R_{\text{f}}}{R_{1}} \quad \text{inverting}$ $G = 1 + \frac{R_{\text{f}}}{R_{1}} \quad \text{non-inverting}$ $V_{\text{out}} = -R_{\text{f}} \left(\frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \frac{V_{3}}{R_{3}}\right) \text{ summing}$

www.theallpapers.com

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case. You are advised to spend about **30 minutes** on this section.

- 1 A particle oscillates with undamped simple harmonic motion. Which one of the following statements about the acceleration of the oscillating particle is true?
 - **A** It is least when the speed is greatest.
 - **B** It is always in the opposite direction to its velocity.
 - **C** It is proportional to the frequency.
 - **D** It decreases as the potential energy increases.
- 2 A simple pendulum and a mass-spring system both have the same time period *T* at the surface of the Earth. If taken to another planet where the acceleration due to gravity is twice that on Earth, which line, **A** to **D**, in the table gives the correct new periods?

	simple pendulum	mass-spring
A	$T\sqrt{2}$	$\frac{T}{\sqrt{2}}$
В	$\frac{T}{\sqrt{2}}$	Т
С	$T\sqrt{2}$	Т
D	$\frac{T}{\sqrt{2}}$	$T\sqrt{2}$

3 A particle of mass 0.20 kg moves with simple harmonic motion of amplitude 2.0×10^{-2} m. If the total energy of the particle is 4.0×10^{-5} J, what is the time period of the motion?

A
$$\frac{\pi}{4}$$
 seconds

B $\frac{\pi}{2}$ seconds

- C π seconds
- **D** 2π seconds

- 4 A loudspeaker produces sound waves in air of wavelength 0.68 m and speed 340 m s^{-1} . How many cycles of vibration does the loudspeaker diaphragm make in 10 ms?
 - 5 Α B
 - 10 С 50
 - D 100
- Two long pipes produce stationary waves at their fundamental frequency. Pipe X, of length *l*, is 5 closed at one end. Pipe Y, which is open at both ends, produces vibrations of the same frequency as pipe X. What is the length of pipe Y?
 - $\frac{l}{4}$ А $\frac{l}{2}$ B С

D

2l

4*l*

6 How many of the following four equations correctly represent the energy E stored by a capacitor of capacitance C when it is charged to a pd V and its charge is Q?

$$E = \frac{1}{2} \frac{Q^2}{C}$$
 $E = \frac{1}{2} \frac{C}{V^2}$ $E = \frac{1}{2} QC$ $E = \frac{1}{2} CV^2$

- А one
- B two
- С three
- D four

7 A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500 Ω resistor from an initial pd of 6.0 V. The datalogger is capable of recording 1000 readings in 10 s. Which line, A to D, in the table gives the pd and the number of readings made after a time equal to the time constant of the discharge circuit?

	potential difference/V	number of readings
A	2.2	50
В	3.8	50
С	2.2	500
D	3.8	500

- 8 The relationship between two physical quantities may be inverse, inverse square or exponential. Which line, A to D, in the table shows correct relationships for
 - (i) pd and time in capacitor discharge,
 - (ii) electric field strength and distance in a radial field, and
 - (iii) gravitational potential and distance in a radial field?

	(i) capacitor discharge	(ii) electric field strength	(iii) gravitational potential
Α	exponential	inverse	inverse square
B	inverse	inverse square	exponential
С	inverse square	exponential	inverse
D	exponential	inverse square	inverse

- **9** For a particle moving in a circle with uniform speed, which one of the following statements is **incorrect**?
 - **A** The velocity of the particle is constant.
 - **B** The force on the particle is always perpendicular to the velocity of the particle.
 - **C** There is no displacement of the particle in the direction of the force.
 - **D** The kinetic energy of the particle is constant.
- 10 What is the angular speed of a car wheel of diameter 0.400 m when the speed of the car is 108 km h^{-1} ?
 - $\mathbf{A} \qquad 75 \, \mathrm{rad} \, \mathrm{s}^{-1}$
 - **B** $150 \, \text{rad s}^{-1}$
 - \mathbf{C} 270 rad s⁻¹
 - **D** 540 rad s^{-1}

11

The diagram shows a charged oil drop of weight mg, which is stationary in the electric field between two parallel plates. If the potential difference between the plates is V and the separation of the plates is d, what is the charge on the oil drop?

$$\mathbf{A} \quad -\frac{Vd}{mg}$$

- **B** $-\frac{V}{mgd}$
- C mgVd

D
$$-\frac{mgd}{V}$$

The diagram shows a square coil PQRS placed in a uniform magnetic field with the plane of the coil parallel to the lines of magnetic field. A constant current is passed round the coil in the direction shown, causing a force to act on side PS of the coil. Which one of the following statements about the forces acting on the other sides of the coil is correct?

- A A force acts on each of the other sides of the coil.
- **B** No force acts on sides PQ and RS of the coil.
- C A force acts on side RS and an equal and opposite force to this force acts on side PQ.
- **D** A force acts on side QR in the same direction as the force that acts on PS.
- 13 Which one of the following is **not** a unit of magnetic flux?
 - $\mathbf{A} \qquad \mathrm{N}\,\mathrm{m}\,\mathrm{A}^{-1}$
 - B Wb

12

- $C T m^2$
- \mathbf{D} V s⁻¹
- 14 The output power of a nuclear reactor is provided by nuclear fuel which decreases in mass at a rate of 4×10^{-6} kg per hour. What is the maximum possible output power of the reactor?
 - A 28 kW
 - **B** 50 MW
 - C 100 MW
 - **D** 200 MW

15 Which one of the following statements concerning a thermal nuclear reactor containing uranium is correct?

If the amount of fissile material in the reactor exceeds the critical mass, the fission reactions

- A can be controlled by a suitable absorber of neutrons.
- **B** can be controlled by a suitable moderating material.
- C can be controlled if the coolant flows at a fast rate.
- **D** cannot be controlled.

END OF SECTION A

There are no questions printed on this page

There are no questions printed on this page