General Certificate of Education
January 2005
Advanced Level Examination

PHYSICS (SPECIFICATION A)
 Unit 4 Waves, Fields and Nuclear Energy

Section A

Wednesday 26 January 2005 Morning Session

In addition to this paper you will require:

- an objective test answer sheet;
- a black ball-point pen;
- a calculator;
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this section is 30 .
- Section A and Section B of this paper together carry 15% of the total marks for Physics Advanced.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated Data Sheet is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions.

You are to select the most appropriate answer in each case.
You are advised to spend approximately $\mathbf{3 0}$ minutes on this section.

1 Which one of the following statements always applies to a damping force acting on a vibrating system?
A It is in the same direction as the acceleration.
B It is in the opposite direction to the velocity.
C It is in the same direction as the displacement.
D It is proportional to the displacement.

2 Which line, \mathbf{A} to \mathbf{D}, in the table shows correct relationships for the respective wavelengths, $\lambda_{\mathrm{L}}, \lambda_{\mathrm{S}}$, and frequencies, $f_{\mathrm{L}}, f_{\mathrm{S}}$, of light waves and sound waves?

	wavelengths	frequencies
A	$\lambda_{\mathrm{L}} \ll \lambda_{\mathrm{S}}$	$f_{\mathrm{L}} \gg f_{\mathrm{S}}$
B	$\lambda_{\mathrm{L}} \ll \lambda_{\mathrm{S}}$	$f_{\mathrm{L}} \ll f_{\mathrm{S}}$
\mathbf{C}	$\lambda_{\mathrm{L}} \gg \lambda_{\mathrm{S}}$	$f_{\mathrm{L}} \gg f_{\mathrm{S}}$
D	$\lambda_{\mathrm{L}} \gg \lambda_{\mathrm{S}}$	$f_{\mathrm{L}} \ll f_{\mathrm{S}}$

3 Two points on a progressive wave differ in phase by $\frac{\pi}{4}$. The distance between them is 0.5 m , and the frequency of the oscillation is 10 Hz . What is the minimum speed of the wave?

A $\quad 0.2 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 10 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 20 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 40 \mathrm{~m} \mathrm{~s}^{-1}$

4 Which line, A to \mathbf{D}, in the table gives a correct difference between a progressive wave and a stationary wave?

	progressive wave	stationary wave
A	all the particles vibrate	some of the particles do not vibrate
B	none of the particles vibrate with the same amplitude	all the particles vibrate with the same amplitude
C	all the particles vibrate in phase with each other	none of the particles vibrate in phase with each other
D	some of the particles do not vibrate	all the particles vibrate in phase with each other

5 The diagram shows a microwave transmitter T which directs microwaves of wavelength λ at two slits S_{1} and S_{2} formed by metal plates. The microwaves that pass through the two slits are detected by a receiver.

When the receiver is moved to P from O , which is equidistant from S_{1} and S_{2}, the signal received decreases from a maximum to a minimum. Which one of the following statements is a correct deduction from this observation?

A The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=0.5 \lambda$
B The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=\lambda$
C The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=0.5 \lambda$
D The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=\lambda$

6 A $1.0 \mu \mathrm{~F}$ capacitor is charged by means of a constant current of $10 \mu \mathrm{~A}$ for 20 s . What is the energy finally stored in the capacitor?

A $\quad 4.0 \times 10^{-4} \mathrm{~J}$
B $\quad 2.0 \times 10^{-3} \mathrm{~J}$
C $\quad 2.0 \times 10^{-2} \mathrm{~J}$
D $\quad 4.0 \times 10^{-2} \mathrm{~J}$

7 In the circuit shown, the capacitor C is charged to a potential difference V when the switch S is closed.

Which line, A to \mathbf{D}, in the table gives a correct pair of graphs showing how the charge and current change with time after S is closed?

	charge	current
A	graph 1	graph 1
B	graph 1	graph 2
C	graph 2	graph 2
D	graph 2	graph 1

8 A mass on the end of a string is whirled round in a horizontal circle at increasing speed until the string breaks. The subsequent path taken by the mass is

A a straight line along a radius of the circle.
B a horizontal circle.
C a parabola in a horizontal plane.
D a parabola in a vertical plane.

9 A particle of mass m moves in a circle of radius r at a uniform speed with frequency f. What is the kinetic energy of the particle?

A $\quad \frac{m f^{2} r^{2}}{4 \pi^{2}}$
B $\quad \frac{m f^{2} r}{2}$
C $\quad 2 \pi^{2} m f^{2} r^{2}$
D $\quad 4 \pi^{2} m f^{2} r^{2}$

10 Two isolated point charges are separated by 0.04 m and attract each other with a force of $20 \mu \mathrm{~N}$. If the distance between them is increased by 0.04 m , what is the new force of attraction?

A	$40 \mu \mathrm{~N}$
B	$20 \mu \mathrm{~N}$
C	$10 \mu \mathrm{~N}$
D	$5 \mu \mathrm{~N}$

11

The diagram shows a uniform electric field of strength $10 \mathrm{Vm}^{-1}$
A charge of $4 \mu \mathrm{C}$ is moved from P to Q and then from Q to R. If the distance $P Q$ is 2 m and $Q R$ is 3 m , what is the change in potential energy of the charge when it is moved from P to R ?

A $\quad 40 \mu \mathrm{~J}$
B $\quad 50 \mu \mathrm{~J}$
C $\quad 120 \mu \mathrm{~J}$
D $\quad 200 \mu \mathrm{~J}$

12 The path followed by an electron of momentum p, carrying charge $-e$, which enters a magnetic field at right angles, is a circular arc of radius r.
What would be the radius of the circular arc followed by an α particle of momentum $2 p$, carrying charge $+2 e$, which entered the same field at right angles?

A $\quad \frac{r}{2}$
B r
C $\quad 2 r$
D $\quad 4 r$
13 The mass of the beryllium nucleus, ${ }_{4}^{7} \mathrm{Be}$, is 7.01473 u . What is the binding energy per nucleon of this nucleus?

Use the following data:

$$
\begin{aligned}
& \text { mass of proton }=1.00728 \mathrm{u} \\
& \text { mass of neutron }=1.00867 \mathrm{u} \\
& 1 \mathrm{u}=931.3 \mathrm{MeV}
\end{aligned}
$$

A	1.6 MeV nucleon ${ }^{-1}$
B	5.4 MeV nucleon
C	9.4 MeV nucleon
C	12.5 MeV nucleon

14 The fusion of two deuterium nuclei produces a nuclide of helium plus a neutron and liberates 3.27 MeV of energy. How does the mass of the two deuterium nuclei compare with the combined mass of the helium nucleus and neutron?

A It is $5.8 \times 10^{-30} \mathrm{~kg}$ greater before fusion.
B It is $5.8 \times 10^{-30} \mathrm{~kg}$ greater after fusion.
C It is $5.8 \times 10^{-36} \mathrm{~kg}$ greater before fusion.
D It is $5.8 \times 10^{-36} \mathrm{~kg}$ greater after fusion.
15 The fission of one nucleus of uranium 235 releases 200 MeV of energy. What is the value of this energy in J ?

A $\quad 3.2 \times 10^{-25} \mathrm{~J}$
B $\quad 3.2 \times 10^{-17} \mathrm{~J}$
C $\quad 3.2 \times 10^{-11} \mathrm{~J}$
D $\quad 2.0 \times 10^{6} \mathrm{~J}$

END OF SECTION A

