General Certificate of Education January 2005 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

Section A

Wednesday 26 January 2005 Morning Session

In addition to this paper you will require:

- an objective test answer sheet;
- a black ball-point pen;
- a calculator;
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book **not** on the answer sheet.

Information

- The maximum mark for this section is 30.
- Section A and Section B of this paper together carry 15% of the total marks for Physics Advanced.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

PA04

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

volume of cylinder = $\pi r^2 h$ area of sphere = $4\pi r^2$ *volume of sphere* = $\frac{4}{3}\pi r^3$

Fundamental constants and values					Mechanics and Applied	Fields, Waves, Quantum	
Quantity Symbol Value Units			Physics	Phenomena			
speed of light in vacuo $c = 3.00 \times 10^8 \text{ m s}^{-1}$		v = u + at	a = F				
permeability of free space μ_0		μ_0	$4\pi \times 10^{-1}$	$H m^{-1}$		$s = \left(\frac{u+v}{2}\right)t$	$s - \overline{m}$
charge of electron		e^{c_0}	1.60×10^{-1}			(2)	$g = -\frac{GM}{GM}$
the Planck constant		h	6.63×10^{-3}	⁴ Js		$a_{1} = at^2$	r^2
gravitational constant		G	6.67×10^{-1}	$ N m^2 k$	cg ⁻²	$s \equiv u t + \frac{1}{2}$	ΔV
the Avogadro o	constant	N _A	6.02×10^{23}	mol ⁻¹		$u^2 - u^2 + 2as$	$g = -\frac{\Delta v}{\Delta x}$
molar gas cons	tant	R	8.31	$J K^{-1} n$	nol ⁻¹	v - u + 2us	
the Boltzmann	constant	k	1.38×10^{-2}	$J K^{-1}$	w -4	$F = \frac{\Delta(m\nu)}{m\nu}$	$V = -\frac{GM}{r}$
the Wien const	stant	σ	$5.67 \times 10^{\circ}$	W m ²	K '	$I = \Delta t$	(2, 2)
electron rest m		m	2.90×10^{-3}	l ko		P = Fv	$a = -(2\pi f)^2 x$
(equivalent to	5.5×10^{-4} u)	me	2.11 A 10	N 5		nowar output	$v = \pm 2\pi f \sqrt{A^2 - x^2}$
electron charge	e/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹		$efficiency = \frac{power output}{power input}$	$x = A \cos 2\pi ft$
proton rest ma	ss	$m_{\rm p}$	1.67×10^{-2}	/ kg		power input	$x = A \cos 2\pi \eta t$
(equivalent to	1.00728u)	-	2			$\omega = \frac{\nu}{2} = 2\pi f$	$T = 2\pi \sqrt{\frac{m}{T}}$
proton charge/	mass ratio	e/m _p	9.58×10^{7}	$C kg^{-1}$		r 2.09	
neutron rest m	ass	$m_{\rm n}$	1.67×10^{-2}	' kg		v^2	$T = 2\pi \sqrt{\frac{l}{a}}$
(equivalent to	1.0086/U		0.01	N ha-1		$a = \frac{v}{r} = r\omega^2$	18
gravitational In	eld strength	g	9.81	1 Kg			$\lambda = \frac{\omega s}{D}$
atomic mass ur	nit	8	1.661×10^{-5}	$\frac{11}{k\sigma}$		$I = \sum mr^2$	D
(1u is equivale)	nt to	, "	1.001 / 10	~ 5		1 – Z mi	$d\sin\theta = n\lambda$
931.3 MeV)						$E_{\rm k} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{2}$
							D
Fundamental	particles					$\omega_2 = \omega_1 + \alpha t$	$n_2 = \frac{\sin \theta_1}{\cos \theta_1} = \frac{c_1}{\cos \theta_1}$
CI	A	C	, ,	D /		2 1 2	$\sin \theta_2 c_2$
Class	Name	Syn	ibol	Rest energ	у	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$n_1 = n_2$
				'MeV		$\omega^2 - \omega^2 + 2\alpha \theta$	$1^{n_2} - \frac{1}{n_1}$
photon	photon	γ		C		$\omega_2 = \omega_1 + 2\alpha\theta$	$\sin \theta = \frac{1}{2}$
lepton	neutrino	v_{c}		C		$\theta = \frac{1}{2} (\omega_1 + \omega_2) t$	$\sin \sigma_c = n$
		\mathbf{v}_{μ}	1	С			E = hf
	electron	e^{\pm}	1	0.510999		$T = I\alpha$	$hf = \phi + E_{\rm k}$
	muon	μ^{\pm}		105.659			$hf = E_1 - E_2$
mesons	pion	π [±]		139.576		angular momentum = $I\omega$. h h
	Prom	π^0		134 972		$W = I\theta$ $P - T\omega$	$\lambda = \frac{n}{p} = \frac{n}{mv}$
	kaon	K [±]		193 821		$I = I \omega$	1
	Kuon	K ₀		107 767		angular impulse = change of	$C = \frac{1}{\sqrt{\mu_0 E_0}}$
harvons	proton	n		128 757		angular momentum = Tt	γμα()C()
Daiyons	proton	P		730.237		$\Delta Q = \Delta U + \Delta W$	Electricity
	neutron	n		939.331		$\Delta W_{\rm y} = p \Delta V$	
D (1 (1						pV' = constant	$\epsilon = \frac{E}{E}$
Properties of	quarks					work done per cuelo - area	\overline{Q}
Туре	Charge	Bar	yon	Strangenes	rs –	work abne per cycle = area $of loop$	$\epsilon = I(R+r)$
		nun	nber			<i>oj 100p</i>	1 1 1 1
	2		1	0		<i>input power = calorific</i>	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$
u	+ 5	+	3	0		value \times fuel flow rate	$R_{\rm T}$ R_1 R_2 R_3
d	$-\frac{1}{3}$	+	$\frac{1}{3}$	0			$R_{\mathrm{T}} = R_1 + R_2 + R_3 + \cdots$
S	$-\frac{1}{2}$.4.	1	_1		indicated power as (area of $p - V$	$P = I^2 R$
5	3	1	3	1		$loop) \times (no. of cycles/s) \times$	F V
Commetized						(no. oj cylinders)	$E = \frac{1}{O} = \frac{v}{d}$
Geometrical equations			friction power = indicated	æ			
arc length = $r\theta$			power – brake power	$E = \frac{1}{Q}$			
circumference of circle = $2\pi r$					· - ·	$4\pi\varepsilon_0 r^2$	
area of circle $-\pi r^2$					afficiancy – $W = Q_{in} - Q_{out}$	$F = \frac{1}{2} OV$	
			$-\frac{Q_{\rm in}}{Q_{\rm in}} = -\frac{Q_{\rm in}}{Q_{\rm in}}$	L = 2Qr			
area of cylinder = $2\pi rh$						I' = BIl	

maximum possible efficiency = $\frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$ www.theat/papers.com over

3

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$	$E = mc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{v^{2}}{2}\right)^{\frac{1}{2}}}$
$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	$\begin{pmatrix} c^2 \end{pmatrix}$
$V_{\rm rms} = \frac{V_0}{\Xi}$	$l = l_0 \left(1 - \frac{\nu^2}{c^2} \right)^{\frac{1}{2}}$
$\sqrt{2}$	$t = \frac{t_0}{t_0}$
Mechanical and Thermal	$\left(1-\frac{\nu^2}{c^2}\right)^{\frac{1}{2}}$
Properties	
the Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$	
energy stored $= \frac{1}{2} Fe$	Astrophysics and M Physics
$\Delta Q = mc \ \Delta \theta$ $\Delta Q = ml$	Body Mass/kg
$pV = \frac{1}{3} Nmc^2$	Sun 2.00×10^{30}
$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2NT}$	Earth 6.00×10^{24}
$2N_{\rm A}$	1 astronomical unit =
Nuclear Physics and Turning Points in Physics	1 parsec = 206265 AU 3.26 ly
$force = \frac{eV_p}{eV_p}$	1 light year = 9.45×10^{10}
d d	Hubble constant (H) =
force = Bev	angle subtended
radius of curvature = $\frac{mv}{Be}$	M = angle subtend unaide
$\frac{ev}{d} = mg$	$M = \frac{f_{o}}{f_{o}}$
work done = eV	$f_{ m e}$
$F = 6\pi\eta r\nu$	$m - M = 5 \log \frac{d}{10}$
$I = k \frac{I_0}{x^2}$	$\lambda_{\max}T = \text{constant} = 0.0$
$\frac{\Delta N}{\Delta N} = -\lambda N$	v = Hd
Δt	$P = \sigma A T^4$
$\lambda = \frac{h}{\sqrt{2meV}}$	$\frac{\Delta f}{f} = \frac{\nu}{c}$
$N = N_0 e^{-\lambda t}$	$\Delta \lambda =$
$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$	λ c
$D = 4\frac{1}{3}$	$R_{\rm s} \approx \frac{2GM}{c^2}$
$\kappa = r_0 A^3$	

1		
-		
$P = \sigma A T^4$		
$\frac{\Delta f}{f} = \frac{v}{c}$		

Medical Physics $power = \frac{1}{f}$ $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ and $m = \frac{v}{u}$ *intensity level* = $10 \log \frac{I}{I_0}$ $I = I_0 e^{-\mu x}$ $\mu_{\rm m} = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 $2.4\ 2.7\ 3.0\ 3.3\ 3.6\ 3.9\ \ 4.3\ 4.7\ 5.1\ 5.6\ 6.2$ 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

 $\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$ $C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$ $X_{\rm C} = \frac{1}{2\pi fC}$

```
Alternating Currents
```

$$f = \frac{1}{T}$$

G

Operational amplifier

 $G = \frac{V_{\rm out}}{V_{\rm in}}$ voltage gain

$$=-\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_1}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \text{ summing}$$

www.theallpapers.com

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions.

You are to select the most appropriate answer in each case. You are advised to spend approximately **30 minutes** on this section.

- 1 Which one of the following statements always applies to a damping force acting on a vibrating system?
 - A It is in the same direction as the acceleration.
 - **B** It is in the opposite direction to the velocity.
 - C It is in the same direction as the displacement.
 - **D** It is proportional to the displacement.
- 2 Which line, A to D, in the table shows correct relationships for the respective wavelengths, $\lambda_{\rm L}$, $\lambda_{\rm S}$, and frequencies, $f_{\rm L}$, $f_{\rm S}$, of light waves and sound waves?

	wavelengths	frequencies
A	$\lambda_{\rm L} << \lambda_{\rm S}$	$f_{\rm L} >> f_{\rm S}$
В	$\lambda_{\rm L} << \lambda_{ m S}$	$f_{\rm L} \ll f_{\rm S}$
С	$\lambda_{\rm L} >> \lambda_{\rm S}$	$f_{\rm L} >> f_{\rm S}$
D	$\lambda_{\rm L} >> \lambda_{\rm S}$	$f_{\rm L} \ll f_{\rm S}$

- 3 Two points on a progressive wave differ in phase by $\frac{\pi}{4}$. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave?
 - A 0.2 m s^{-1}
 - **B** $10 \,\mathrm{m\,s^{-1}}$
 - C $20 \,\mathrm{m\,s^{-1}}$
 - **D** $40 \,\mathrm{m \, s^{-1}}$

4 Which line, **A** to **D**, in the table gives a correct difference between a progressive wave and a stationary wave?

	progressive wave	stationary wave
A	all the particles vibrate	some of the particles do not vibrate
B	none of the particles vibrate with the same amplitude	all the particles vibrate with the same amplitude
С	all the particles vibrate in phase with each other	none of the particles vibrate in phase with each other
D	some of the particles do not vibrate	all the particles vibrate in phase with each other

5 The diagram shows a microwave transmitter T which directs microwaves of wavelength λ at two slits S_1 and S_2 formed by metal plates. The microwaves that pass through the two slits are detected by a receiver.

When the receiver is moved to P from O, which is equidistant from S_1 and S_2 , the signal received decreases from a maximum to a minimum. Which one of the following statements is a correct deduction from this observation?

- A The path difference $S_1O S_2O = 0.5\lambda$
- **B** The path difference $S_1O S_2O = \lambda$
- C The path difference $S_1P S_2P = 0.5\lambda$
- **D** The path difference $S_1P S_2P = \lambda$

- 6 A $1.0 \,\mu\text{F}$ capacitor is charged by means of a **constant** current of $10 \,\mu\text{A}$ for 20s. What is the energy finally stored in the capacitor?
 - $\begin{array}{lll} {\bf A} & & 4.0 \times 10^{-4} {\rm J} \\ {\bf B} & & 2.0 \times 10^{-3} {\rm J} \\ {\bf C} & & 2.0 \times 10^{-2} {\rm J} \\ {\bf D} & & 4.0 \times 10^{-2} {\rm J} \end{array}$
- 7 In the circuit shown, the capacitor C is charged to a potential difference V when the switch S is closed.

Which line, **A** to **D**, in the table gives a correct pair of graphs showing how the charge and current change with time after S is closed?

	charge	current
A	graph 1	graph 1
В	graph 1	graph 2
С	graph 2	graph 2
D	graph 2	graph 1

www.theallpapers.com

- 8 A mass on the end of a string is whirled round in a horizontal circle at increasing speed until the string breaks. The subsequent path taken by the mass is
 - A a straight line along a radius of the circle.
 - **B** a horizontal circle.
 - C a parabola in a horizontal plane.
 - **D** a parabola in a vertical plane.
- 9 A particle of mass m moves in a circle of radius r at a uniform speed with frequency f. What is the kinetic energy of the particle?
 - $\mathbf{A} \qquad \frac{mf^2r}{4\pi^2}$ $\mathbf{B} \qquad \frac{mf^2r}{2}$ $\mathbf{C} \qquad 2\pi^2mf^2r^2$
 - **D** $4\pi^2 m f^2 r^2$
- 10 Two isolated point charges are separated by 0.04 m and attract each other with a force of $20 \mu \text{N}$. If the distance between them is increased by 0.04 m, what is the new force of attraction?

A	40 µN
B	20 µN
С	10 µN
D	5 uN

11

The diagram shows a uniform electric field of strength 10 Vm⁻¹

A charge of 4μ C is moved from P to Q and then from Q to R. If the distance PQ is 2 m and QR is 3 m, what is the change in potential energy of the charge when it is moved from P to R?

Α	40 µJ
В	50 µJ
С	120 µJ
D	200 µJ

12 The path followed by an electron of momentum p, carrying charge -e, which enters a magnetic field at right angles, is a circular arc of radius r.

What would be the radius of the circular arc followed by an α particle of momentum 2p, carrying charge +2e, which entered the same field at right angles?

- $\frac{r}{2}$ Α B r С 2rD 4r
- The mass of the beryllium nucleus, ${}^{7}_{4}$ Be, is 7.01473 u. What is the binding energy **per nucleon** of this 13 nucleus?

Use the following data:

```
mass of proton = 1.00728 \,\mathrm{u}
mass of neutron = 1.00867 \,\mathrm{u}
1u = 931.3 \,\text{MeV}
```

- 1.6 MeV nucleon⁻¹ Α
- 5.4 MeV nucleon⁻¹ B
- 9.4 MeV nucleon⁻¹ С
- D 12.5 MeV nucleon⁻¹
- 14 The fusion of two deuterium nuclei produces a nuclide of helium plus a neutron and liberates 3.27 MeV of energy. How does the mass of the two deuterium nuclei compare with the combined mass of the helium nucleus and neutron?
 - It is 5.8×10^{-30} kg greater before fusion. Α
 - B
 - С
 - It is 5.8×10^{-30} kg greater before fusion. It is 5.8×10^{-30} kg greater after fusion. It is 5.8×10^{-36} kg greater before fusion. It is 5.8×10^{-36} kg greater after fusion. D
- 15 The fission of one nucleus of uranium 235 releases 200 MeV of energy. What is the value of this energy in J?

 3.2×10^{-25} J Α $3.2 \times 10^{-17} \text{J}$ В $3.2 \times 10^{-11} \text{J}$ С $2.0 \times 10^{6} \text{J}$ D

END OF SECTION A