GCE

Physics A

Unit PA02

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

[^0]
Unit 2

1
(a)(i) (use of $\Delta Q=m c \Delta \theta$ gives) energy lost by water $=0.20 \times 4200 \times 20$

$$
=1.7 \times 10^{4} \mathrm{~J} \checkmark \quad\left(1.68 \times 10^{4} \mathrm{~J}\right)
$$

(a)(ii) rate of loss of energy $=\frac{1.68 \times 10^{4}}{10 \times 60}=28(\mathrm{~W}) \checkmark$
(allow C.E. for value of energy lost in (i))
(b)(i) (use of $\Delta \mathrm{Q}=m l$ gives) $(28 \times t)=0.20 \times 3.3 \times 10^{5}$

$$
t=2.4 \times 10^{3} \mathrm{~s} \checkmark \quad\left(2.36 \times 10^{3} \mathrm{~s}\right)
$$

(allow C.E. for value of rate of loss of energy in (a)(ii)
(b)(ii) e.g. constant rate of heat loss ice remains at $0^{\circ} \mathrm{C}$

2
(a)(i) (gravitational) potential energy to kinetic energy \checkmark
(ii) kinetic energy to heat energy
[or work done against friction]
(b) e.g. when using light gates
place piece of card on trolley of measured length
card obscures light gate just before trolley strikes block calculate speed from length of card/time obscured \checkmark
alternative 1: measured horizontal distance speed $=$ distance/time
time
alternative 2: measure h
equate potential and kinetic energy
$v^{2}=g h \checkmark$
alternative 3: data logger + sensor how data processed how speed found \checkmark
(c) vary starting height of trolley [or change angle]
the greater the height the greater the speed of impact
[or alter friction of surface greater friction, lower speed \checkmark]

3
(i) weight greater than air resistance
[or (initially only) weight/gravity acting]
hence resultant force downwards or therefore acceleration (2nd law)
air resistance or upward force increases with speed
until air resistance equals weight or resultant force is zero
leaf moves at constant velocity (1st law)
[or 1st law applied correctly]
(ii) air resistance depends on shape
[or other correct statement about air resistance]
air resistance less significant \checkmark
air resistance less, therefore greater velocity
[or average velocity greater or accelerates for longer] \checkmark

4
(a)(i) horizontal component of the tension in the cable
(a)(ii) vertical component of the tension in the cable \checkmark
(b)(i) $T_{\text {vert }}=250 \times 9.81=2500 \mathrm{~N} \checkmark \quad(2452 \mathrm{~N})$
(b)(ii) $T_{\text {horiz }}=1200 \mathrm{~N} \checkmark$
(b)(iii) $T^{2}=(1200)^{2}+(2500)^{2} \checkmark$
$T=\left(1.44 \times 10^{6}+6.25 \times 10^{6}\right)^{1 / 2}=2800 \mathrm{~N} \checkmark \quad(2773 \mathrm{~N})$
(if use of $T_{\text {vert }}=2450 \mathrm{~N}$ then $T=2730 \mathrm{~N}$)
(allow C.E. for values from (b)(i) and (b)(ii))
(b)(iv) $\tan \theta=\frac{1200}{2500}$
$\theta=26^{\circ} \checkmark$
(allow C.E. for values from (b)(i) and (b)(ii))

5

(a)(i) acceleration
(a)(ii) both represent acceleration of free fall [or same acceleration]
(a)(iii) height/distance ball is dropped from above the ground [or displacement]
(a)(iv) moving in the opposite direction
(a)(v) kinetic energy is lost in the collision
[or inelastic collision]
(b)(i) $\quad v^{2}=2 \times 9.81 \times 1.2 \quad \checkmark$
$v=4.9 \mathrm{~m} \mathrm{~s}^{-1} \checkmark\left(4.85 \mathrm{~m} \mathrm{~s}^{-1}\right)$
(b)(ii) $u^{2}=2 \times 9.81 \times 0.75 \quad \checkmark$
$u=3.8 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \quad\left(3.84 \mathrm{~m} \mathrm{~s}^{-1}\right)$
(b)(iii) change in momentum $=0.15 \times 3.84-0.15 \times 4.85 \checkmark$

$$
=-1.3 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \checkmark \quad\left(1.25 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)
$$

(allow C.E. from (b)(i) and (b)(ii))
(b)(iv) $F=\frac{1.3}{0.10} \quad \checkmark$

$$
\begin{equation*}
=13 \mathrm{~N} \tag{8}
\end{equation*}
$$

(allow C.E. from (b)(iii))

6
(a)(i) $p V=n R T \checkmark$
(a)(ii) all particles identical or have same mass
collisions of gas molecules are elastic
inter molecular forces are negligible (except during collisions)
volume of molecules is negligible (compared to volume of container)
time of collisions is negligible motion of molecules is random
large number of molecules present (therefore statistical analysis applies)
monamatic gas
Newtonian mechanics applies
(b) $\quad E_{\mathrm{k}}=\frac{3 R T}{2 N_{\mathrm{A}}}$ or $\frac{3}{2} k T \checkmark$

$$
=\frac{3 \times 8.31 \times 293}{2 \times 6.02 \times 10^{23}}
$$

$$
\begin{equation*}
=6.1 \times 10^{-21} \mathrm{~J} \checkmark \quad\left(6.07 \times 10^{-21} \mathrm{~J}\right) \tag{3}
\end{equation*}
$$

(c) \quad masses are different \checkmark
hence because E_{k} is the same, mean square speeds must be different \checkmark

Quality of Written Communication (Q2(b) and Q3) $\checkmark \checkmark$ (2)

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth \&t Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1H0
 Kathleen Tattersall: Director General

