

ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PA02

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

Unit 2

1 (a)(i)	(use of $\Delta Q = m$	$dc\Delta\theta$ gives) energy lost by water = $0.20 \times 4200 \times 20$ = 1.7×10^4 J \checkmark (1.68 $\times 10^4$ J)	
(a)(ii)	rate of loss of e	energy = $\frac{1.68 \times 10^4}{10 \times 60}$ = 28 (W) \checkmark C.E. for value of energy lost in (i))	(3)
(b)(i)	(use of $\Delta Q = m$ t = 2.4 (allow	d gives) $(28 \times t) = 0.20 \times 3.3 \times 10^5$ ✓ × 10 ³ s ✓ (2.36 × 10 ³ s) C.E. for value of rate of loss of energy in (a)(ii)	
(b)(ii)	e.g. constant ra ice remain	te of heat loss \checkmark s at 0°C \checkmark	<u>max3)</u> (6)
2 (a)(i)	(gravitational)	potential energy to kinetic energy \checkmark	
(ii)	kinetic energy [or work done	to heat energy against friction] ✓	(2)
(b)	e.g. when using light gates place piece of card on trolley of measured length ✓ card obscures light gate just before trolley strikes block ✓ calculate speed from length of card/time obscured ✓		
	alternative 1:	measured <u>horizontal distance</u> \checkmark speed = distance/time \checkmark time \checkmark	
	alternative 2:	measure $h \checkmark$ equate potential and kinetic energy \checkmark $v^2 = gh \checkmark$	
	alternative 3:	data logger + sensor \checkmark how data processed \checkmark how speed found \checkmark	(3)

(c)	vary starting height of trolley [or change angle] ✓ the greater the height the greater the speed of impact ✓	
	[or alter friction of surface \checkmark greater friction, lower speed \checkmark]	<u>(2)</u> (7)
3 (i)	 weight greater than air resistance [or (initially only) weight/gravity acting] ✓ hence resultant force downwards or <u>therefore</u> acceleration (2nd law) ✓ air resistance or upward force increases with speed ✓ until air resistance equals weight or resultant force is zero ✓ leaf moves at constant velocity (1st law) [or 1st law applied correctly] ✓ 	
(ii)	 air resistance depends on shape [or other correct statement about air resistance] ✓ air resistance less significant ✓ air resistance less, therefore greater velocity [or average velocity greater or accelerates for longer] ✓ 	(5)
		$\frac{\max(5)}{(5)}$
4 (a)(i)	horizontal component of the tension in the cable \checkmark	
(a)(ii)	vertical component of the tension in the cable \checkmark	(2)
(b)(i)	$T_{\rm vert} = 250 \times 9.81 = 2500 {\rm N}$ (2452 N)	
(b)(ii)	$T_{\rm horiz} = 1200 \ { m N} \checkmark$	
(b)(iii)	$T^{2} = (1200)^{2} + (2500)^{2} \checkmark$ $T = (1.44 \times 10^{6} + 6.25 \times 10^{6})^{1/2} = 2800 \text{ N} \checkmark (2773 \text{ N})$ (if use of $T_{\text{vert}} = 2450 \text{ N}$ then $T = 2730 \text{ N}$) (allow C.E. for values from (b)(i) and (b)(ii))	
(b)(iv)	$\tan \theta = \frac{1200}{2500} \checkmark$ $\theta = 26^{\circ} \checkmark$	
	(allow C.E. for values from (b)(i) and (b)(ii))	<u>(6)</u> (8)

www.theallpapers.com

5

- (a)(i) acceleration \checkmark
- (a)(ii) both represent acceleration of free fall [or same acceleration] ✓
- (a)(iii) height/distance ball is dropped from above the ground [or displacement] ✓
- (a)(iv) moving in the opposite direction \checkmark
- (a)(v) kinetic energy is lost in the collision [or inelastic collision] ✓
- (b)(i) $v^2 = 2 \times 9.81 \times 1.2 \checkmark$ $v = 4.9 \text{ m s}^{-1} \checkmark (4.85 \text{ m s}^{-1})$

(b)(ii)
$$u^2 = 2 \times 9.81 \times 0.75 \checkmark$$

 $u = 3.8 \text{ m s}^{-1} \checkmark (3.84 \text{ m s}^{-1})$

(b)(iii) change in momentum = $0.15 \times 3.84 - 0.15 \times 4.85 \checkmark$ = -1.3 kg m s⁻¹ \checkmark (1.25 kg m s⁻¹) (allow C.E. from (b)(i) and (b)(ii))

(b)(iv)
$$F = \frac{1.3}{0.10}$$

= 13 N \checkmark
(allow C.E. from (b)(iii))

<u>(8)</u>	
(13)	

(5)

6

(a)(i) $pV = nRT \checkmark$

(a)(ii) all particles identical or have same mass ✓ collisions of gas molecules are elastic ✓ inter molecular forces are negligible (except during collisions) ✓ volume of molecules is negligible (compared to volume of container) ✓ time of collisions is negligible ✓ motion of molecules is random ✓ large number of molecules present (therefore statistical analysis applies) ✓ monamatic gas ✓ Newtonian mechanics applies ✓

(b)
$$E_{\rm k} = \frac{3RT}{2N_{\rm A}} \text{ or } \frac{3}{2}kT \checkmark$$

= $\frac{3 \times 8.31 \times 293}{2 \times 6.02 \times 10^{23}} \checkmark$

 $_{\rm max}(4)$

$= 6.1 \times 10^{-21} \mathrm{J}$ \checkmark	$(6.07 \times 10^{-21} \text{ J})$	(3)

(c)	masses are different 🗸			
	hence because E_k is the same, mean square speeds must be different \checkmark	$\frac{(2)}{(9)}$		
		<u>(7)</u>		

Quality of Written Communication (Q2(b) and Q3) $\checkmark \checkmark$	<u>(2)</u>
	<u>(2)</u>