

ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PA01

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

www.theallpapers.com

Unit 1

1 (a) number of protons = number of electrons (e.g.14) \checkmark number of protons + number of neutrons = 28 \checkmark (b)(i) nuclei with the same number of protons \checkmark but different number of neutrons/nucleons \checkmark (b)(ii) $(137-55) = 82 \checkmark$ (b)(iii) $\frac{Q}{m} = \frac{92 \times 1.60 \times 10^{-19}}{236 \times 1.67 \times 10^{-27}} \checkmark$ $= 3.73 \times 10^7 (C \text{ kg}^{-1}) \checkmark$ (b)(iv) X (= 236 - 137 - 4) = 95 \checkmark

2 (a)(i) positron, neutron, neutrino, positive pion ✓✓(if all correct) (lose ✓ for each error)

(a)(ii) electron, proton, negative muon $\checkmark \checkmark$ (if all correct) (lose \checkmark for each error) (4)

(b)(i)
$$(\mu^{-}) \rightarrow e^{-} + \overline{v_{e}} + v_{\mu} \checkmark$$

(b)(ii) difference: mass or half-life or generation of lepton ✓ similarity: both leptons or both negatively charged ✓ (3)

(c)

 $\frac{(3)}{(10)}$

(2)

(<u>6</u>) (8)

3

(a) there must be a large distance between collisions to allow

electrons to gain enough energy \checkmark

[or the vapour must not completely absorb the electrons] (1)

(b)	the mercury vapour emits ultra violet (radiation) \checkmark the coating absorbs electromagnetic radiation/light from the mercury \checkmark emits longer wavelengths/lower frequencies \checkmark in the visible region \checkmark	_{max} (3)
		<u>(4)</u>
4 (a)	the minimum frequency (of radiation) \checkmark required to eject photoelectrons \checkmark	(2)
(b)(i)	(use of $\phi = hf_0$ gives) $\phi = 6.63 \times 10^{-34} \times 4.85 \times 10^{14} \checkmark$ = 3.22 × 10 ⁻¹⁹ (J) \checkmark	
(b)(ii)	$\phi \left(= \frac{3.22 \times 10^{-19}}{1.60 \times 10^{-19}} \right) = 2.01 \text{ (eV) } \checkmark$	
	(allow C.E. for value of ϕ from (i))	(3)
(c)	line parallel to the given line \checkmark with half the value of the <i>x</i> - intercept \checkmark	(2)
(d)	statement : increase the light intensity/brightness \checkmark	
	explanation : more incident photons (per second) one photon interacts with one electron more emitted electrons (per second) greater rate of <u>flow charge</u> (any two) $\checkmark \checkmark$	<u>(3)</u> (10)
5	$c_{1} = (300 \times 10^{8})$	
(a)(i)	(use of $n = \frac{1}{2}$ gives) $c_{\text{obsc}} = \frac{5.00 \times 10^{8}}{100} = 2.07 \times 10^{8} \text{ m s}^{-1} \checkmark$	

(a)(i) (use of
$$n = \frac{c_1}{c_2}$$
 gives) $c_{\text{glass}} \left(= \frac{3.00 \times 10^8}{1.45} \right) = 2.07 \times 10^8 \text{ m s}^{-1} \checkmark$

(a)(ii) use of
$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{c_1}{c_2} \checkmark$$

 $c_{\text{liquid}} = \frac{2.07 \times 10^8 \times \sin 29.2^\circ}{\sin 26.6^\circ} = 2.26 \times 10^8 \text{ m s}^{-1} \checkmark$ (3)
(allow C.E. for values of c_{glass} from (i))

(b) use of
$$_{1}n_{2} = \frac{c_{1}}{c_{2}}$$
 and $_{1}n_{2} = \frac{n_{2}}{n_{1}} \checkmark$
to give $n_{\text{liquid}} = \frac{1.45 \times 2.07 \times 10^{8}}{2.26 \times 10^{8}} = 1.33 \checkmark$

$$\left[\text{or } n_l = \frac{c_1}{c_{\text{liquid}}} = \frac{3 \times 10^8}{2.26 \times 10^8} = 1.33 \right] \text{ (allow C.E. for value of } c_{\text{liquid}} \text{)}$$

[or use
$$_1n_2 = \frac{\sin\theta_1}{\sin\theta_2}$$
 and $_1n_2 = \frac{n_2}{n_1}$ to give correct answer] (2)

(c) diagram to show : total internal reflection on the vertical surface \checkmark refraction at bottom surface with angle in air greater than that in the liquid (29.2°) \checkmark (2)

<u>(7)</u>

6
(a)(i) an electron moves up from one energy level to another
$$\checkmark$$

(a)(ii) an electron is removed from an atom \checkmark
(b) (use of $hf = E_2 - E_1$ gives) $f = (2.56 - 1.92) \times 10^{-19} \checkmark / 6.63 \times 10^{-34}$
 $= 9.65 \times 10^{13}$ Hz \checkmark
(allow C.E. for incorrect ΔE)
(2)
(2)
(2)
(2)
(4)

7

6

(a)(i) electrons behave as both particles and waves \checkmark

(a)(ii) particle: deflection in an electromagnetic field
or other suitable examples
$$\checkmark$$

wave: electron diffraction \checkmark (3)

(b) (use of
$$\lambda = \frac{h}{mv}$$
 gives) $v \left(= \frac{h}{m\lambda} \right) = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.7 \times 10^{-10}} \checkmark$
= 4.28 × 10⁶ m s⁻¹ ✓ (2)

Quality of Written Communication (Q3(b) and Q4(d)
$$\checkmark \checkmark$$
(2)(2)(2)