$A Q A$

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

AS Use of Mathematics Applying Mathematics paper 2 UOM4/2

Mark Scheme
 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	OE	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

AS Use of Mathematics

Applying Mathematics (UOM4/2)

Answers and Marking Scheme

Question 1

(a)	A : When the price of a pack is $£ 5$ none will be sold B : When nothing is charged for a pack 400000 will be sold	B2	B1 £5; B1 None (sold or brought) B1 nothing charged; B1 400000 (sold or brought)
(b)	$P=5-\frac{5}{4} Q$	M1 A1	for correct numerical value of gradient $\text { (i.e. } \left.\frac{5}{4}\right)$ for equation SC1 $y=5-\frac{5}{4} x$
(c)	C : When the price of a pack is 50 p fruit farmers won't supply any packs of strawberries	B2	allow B1 for identification of 50p B1 no strawberries (or packs)
(d)	$P=Q+0.5$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for gradient, numerical value SC1 $y=x+0.5$ (penalise again)
(e)(i)	$\begin{aligned} & Q+0.5=5-\frac{5}{4} Q \\ & Q+\frac{5}{4} Q=4.5 \\ & \frac{9}{4} Q=\frac{9}{2} \\ & Q=2 \\ & P=2.5 \end{aligned}$ ALTERNATIVE METHOD Elimination method Same coefficient of P or Q Adding/subtracting eg ${ }^{-1}$	M1 M1 A1 A1 (M1 M1) (A1 A1)	equating their expressions for P or Q attempt to isolate Q ft from (b) and (d)
(ii)	When a pack of strawberries costs $£ 2.50200000$ packs will be sold The number of packs that fruit farmers will supply exactly matches the number of packs that customers will buy.	B1 ft B2	Everything sold or no waste B1
	TOTAL	17	

Question 2

(a)	$\begin{aligned} B_{1} & =1.0125 \times 200-25 \\ & =202.50-25.00 \\ & =177.50 \end{aligned}$	M1 A1	Either of first 2 lines give M1 Need to see 202.50-25 Condone 177.5
(b)	1.0125: 1 gives the original amount + 0.0125 gives the amount of interest charged	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	SC1 'interest'
(c)	n $B n$ 0 $£ 200.00$ 1 $£ 177.50$ 2 $£ 154.72$ 3 $£ 131.65$ 4 $£ 108.30$ 5 $£ 84.65$ 6 $£ 60.71$ 7 $£ 36.47$ 8 $£ 11.93$ 9 $£ 0.00$ 10 $£ 0.00$	B1 B1 ft B1 ft B1 ft	Allow $\pm 1 \mathrm{p}$ in any amount (and then ft) for $n=2 \& 3$ for $n=4 \& 5$ for $n=6 \& 7$ for $n=8,910$ SC 2 for rounding to nearest $£$ or 10 p OR use of 3 or more dp. Penalise - values.
(d)	$\begin{aligned} & 8 \times £ 25+£ 11.93 \\ & =£ 211.93 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 ft } \end{gathered}$	ft from table
(e)	$\frac{£ 11.93}{£ 200} \times £ 100=5.97 \%$	$\begin{gathered} \text { M1 } \\ \text { A1 ft } \end{gathered}$	M1 for (d) - 200 i.e. interest
(f)	$B_{n+1}=1.0125 B_{n}-50$$n$ $B n$ 0 $£ 200.00$ 1 $£ 152.50$ 2 $£ 104.41$ 3 $£ 55.71$ 4 $£ 6.41$ 5 $£ 0.00$$\text { interest }=£ 6.41$ half of original interest $=£ 5.97$, so the statement is not true	M1 B1 B1 B1 E1	indication of use of revised recurrence relation (can be seen from 152.50). for $n=1,2$ (allow $\pm 1 \mathrm{p}$) for $n=3,4,5$ (allow $\pm 1 \mathrm{p}$) $[6.41 \pm 1 \mathrm{p}$ gives M1 B3)
	TOTAL	17	

Question 3

(a)	The probability that a call will receive no reply is $\frac{2}{5}$ Therefore 4 out of 10 integers (0 to 9 inclusive) are assigned to this type of response	B1	B1

(b)

Call number	Randomly generated integer	Code of response type	Length of call (minutes)	Cumulative time (minutes)
1	2	A	$1 / 2$	$1^{1 / 2}$
2	5	C	2	$2^{1 / 2}$
3	9	D	5	$71 / 2$
4	7	D	5	$12^{1 / 2}$
5	0	A	$1 / 2$	13
6	5	C	2	15
7	7	D	5	20
8	1	A	$1 / 2$	$20^{1 / 2}$
9	6	C	2	$22^{1 / 2}$
10	1	A	$1 / 2$	23
11	9	D	5	28
12	8	D	5	33
13	3	A	$1 / 2$	$33^{1 / 2}$
14	7	D	5	$38^{1 / 2}$
15	0	A	$1 / 2$	39

B1 for first two rows correct
B1 for next two rows correct ft (cumulative times)
B1 for next two rows correct ft
B1 for final two rows correct ft
(c)

Type of response	Code	Random integer
No reply	A	0,1
Reply but customer unavailable	B	$2,3,4$
Customer replies but unwilling to complete survey	C	5
Customer replies and completes survey	D	$6,7,8,9$

B1 for any two responses assigned correctly
B1 for final two responses assigned correctly
(d)

Call number	Randomly generated integer	Code of response type	Length of call (minutes)	Cumulative time (minutes)
1	7	D	5	5
2	8	D	5	10
3	8	D	5	15
4	2	B	1	16
5	3	B	1	17
6	9	D	5	22
7	6	D	5	27
8	5	C	2	29
9	6	D	5	34
10	9	D	5	39
11	4	B	1	40
12	4	B	1	41
13	1	A	$1 / 2$	$411 / 2$
14	7	D	5	$461 / 2$
15	0	A	$1 / 2$	47

Using their assignment of integers (most likely assignment shown here)
B1 for first two rows correct
B1 for next two rows correct ft (codes and cumulative times)
B1 for next two rows correct ft (codes and cumulative times)
B1 for final two rows correct ft (codes and cumulative times)

(e)	More completed surveys included in evening	B2	
(f)	Anything reasonable, eg - include more categories of response - include a simulation of different call lengths for each category	B2	
	TOTAL	16	

Question 4

(a)	$\theta=20+\frac{60}{\mathrm{e}^{\circ}}(=20+60)=80$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	M1 substitution $t=0$ i.e. e°
(b)	$\begin{aligned} & \theta=20+\frac{60}{e^{k t}} \\ & \text { so } \theta-20=\frac{60}{e^{k t}} \\ & e^{k t}=\frac{60}{\theta-20} \\ & \therefore k t=\ln \left(\frac{60}{\theta-20}\right) \\ & \Rightarrow t=\frac{1}{k} \ln \left(\frac{60}{\theta-20}\right) \end{aligned}$	M1 M1 M1 A1	need equation correct [isolating $\mathrm{e}^{k t}$ gains both method marks]. Condone $\frac{1}{e^{k t}}=\frac{\theta-20}{60}$ Correct use of logs [A1 awarded for fully correct solution]
(c)	$\begin{aligned} & 0.5=\frac{1}{k} \ln \left(\frac{60}{30}\right) \\ & \therefore k=2 \ln 2=1.39 \end{aligned}$	M1 M1 A1	Correct substitutions M1 for 0.5 ; M1 for $50-$ 20 or 30 $\left[50=20+60 e^{-0.5 k}\right.$ M1 M1] OR $\begin{aligned} & {\left[\theta=20+60 e^{-1.39 \times 0.5}\right.} \\ & \text { M1 M1] }=50 \mathrm{~A} 1 \end{aligned}$
(d)	$\begin{aligned} & t=\frac{1}{1.39} \ln \left(\frac{60}{96-20}\right)=-0.1705 \text { or }-0.170096 \\ & \text { no. of minutes }=0.1705 \times 60=10.2 \text { (or } 10.3 \text {) } \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { A1 ft } \\ \hline \end{gathered}$	
(e)	 t hours	B1 B1 B1	approx shape (may show values for negative t. Must not have y-axis as asymptote intercept indicated (80) asymptote indicated (and 20 shown)
(f)(i) (ii)		B1 B1 B1 B1	same intercept for curve lower than original for $t>0$, and stated which is which same asymptote
	TOTAL	20	
	GRAND TOTAL	70	

