

Free-Standing Mathematics Qualification June 2011

Mathematics Advanced Level 6992
(Specification 6992)
Modelling with Calculus

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^0]Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy E mark is for explanation	
Jor ft or F	follow through from previous incorrect result	
CAO	correct answer only	MC

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Free-Standing Mathematics Qualification

Modelling with Calculus (6992)
Answers and Marking Scheme - June 2011

Question 1

(a)	$\frac{\mathrm{d} h}{\mathrm{~d} t}=32 t-193$ $\frac{\mathrm{~d} h}{\mathrm{~d} t}=0 \Rightarrow$ $32 t-193=0$ $t=\frac{193}{32}$ or 6.03 When $t=\frac{193}{32}$, $h=16\left(\frac{193}{32}\right)^{2}-193\left(\frac{193}{32}\right)+780$ $=198$	M 1 A 1	M1 2 terms, either correct
	M1		
(b)(i)	Quadratic shape with minimum point Cuts h axis at 780 and goes higher as $\mathrm{t} \rightarrow 18$	M 1	SC5 for 197
(ii)	The model is not appropriate for values of $t>12$ and reason why	E 1	SC1 for plot not sketch
	TOTAL	$\mathbf{9}$	

Question 2

(a)	$\begin{aligned} & \frac{\mathrm{d} v}{\mathrm{~d} t}=-2+10 t-6 t^{2} \\ & \frac{\mathrm{~d} v}{\mathrm{~d} t}=0 \Rightarrow \\ & -2+10 t-6 t^{2}=0 \\ & 3 t^{2}-5 t+1=0 \\ & t=\frac{5 \pm \sqrt{25-12}}{6} \\ & =\frac{8.606}{6} \text { or } \frac{1.394}{6} \\ & =1.43 \text { or } 0.232 \end{aligned}$	M1A1 M1 M1 A1	M1 2 terms correct; could be seen in (b) SC4 either answer correct Accept 2 dp
(b)	$\frac{\mathrm{d}^{2} v}{\mathrm{~d} t^{2}}=10-12 t$	M1A1ft	M1 Either term correct $\mathrm{ft} \frac{\mathrm{d} v}{\mathrm{~d} t}$
(c)	When $v=1.43$, $\begin{aligned} & v=16-2 \times 1.43+5(1.43)^{2}-2(1.43)^{3} \\ & =17.516 \end{aligned}$ Maximum value is $£ 17.52$ When $t=1.43$, $\frac{\mathrm{d}^{2} v}{\mathrm{~d} t^{2}}=-7.211$ This is negative, hence answer is a maximum	M1 A1 B1 E1	Condone 17.5
(d)	$\begin{aligned} & \frac{\mathrm{d}^{2} v}{\mathrm{~d} t^{2}}=0 \text { when } 10-12 t=0 \\ & t=\frac{5}{6} \text { or } 0.833 \end{aligned}$ The value of the shares is increasing at its fastest rate	M1 A1 E1	
	TOTAL	14	

Question 3

(a)(i)	Three strips \Rightarrow values of t are $0,1,2$ and 3 When $t=0, v=16$ $\begin{aligned} & t=1, v=17 \\ & t=2, v=16 \\ & t=3, v=1 \end{aligned}$ Area $\begin{aligned} & \approx \frac{1}{2} \times 1\{16+1+2(17+16) \\ & =\frac{1}{2}(17+2 \times 33) \\ & =41.5 \end{aligned}$	B2 M1A1 A1	B1 for any 2 correct Ignore subsequent $\div 3$
(ii)	Use more strips	E1	Or use the integral
(b)	$\begin{aligned} & \int_{0}^{3}\left(16-2 t+5 t^{2}-2 t^{3}\right) \mathrm{d} t \\ & =\left[16 t-t^{2}+\frac{5}{3} t^{3}-\frac{1}{2} t^{4}\right]_{0}^{3} \\ & =48-9+45-40.5 \\ & =43.5 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	SC4 use of 1.6 or $1.7 t^{3}$ B1 2 terms correct B2 3 terms correct B3 4 terms correct 2 terms correct and limits
(c)	\therefore Mean value is $£ \frac{43.5}{3}$ $=£ 14.50$	M1 A1 ft	Accept $41.5 \div 3=13.83$ ft (a)(i) or (b) Condone $\frac{(\mathrm{a})(\mathrm{i})+(\mathrm{b})}{2} \div 3$
	TOTAL	13	

Question 4

(a)	When $x=6, h=70+40 \cos 2 \pi$ $\begin{aligned} & =70+40 \times 1 \\ & =110 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { B1 for } \cos 2 \pi=1 \\ & 109.9 \sim 110 \mathrm{SC} 1 \end{aligned}$
(b)	$\frac{\mathrm{d} h}{\mathrm{~d} x}=-40 \cdot \frac{\pi}{3} \sin \frac{\pi}{3} x$	B1 B1 B1	$\begin{aligned} & \frac{\pi}{3} \\ & \sin \frac{\pi}{3} x \end{aligned}$ All correct
(c)	Maximum value of $-\sin \frac{\pi}{3} x$ is 1 Maximum value is $40 . \frac{\pi}{3}=41.88 \ldots$ $=41.9 \text { or } \frac{40 \pi}{3}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Condone max value of $\sin \frac{\pi}{3} x$ is 1 $-41.9 \mathrm{SC} 2$
	TOTAL	8	

Question 5

(a)	$\begin{aligned} & \frac{\mathrm{d} m}{\mathrm{~d} t}=-k m \\ & \int \frac{\mathrm{~d} m}{m}=-\int k d t \\ & \ln m=-\mathrm{k} t+c \\ & m=\mathrm{Ce}^{-k t} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Need this line for A2 M1 for + c Can be obtained in (b) Need correct working
(b)	When $\mathrm{t}=0, \mathrm{~m}=40, \therefore \mathrm{C}=40$ $m=40 \mathrm{e}^{-k t}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(c)	When $\mathrm{t}=6,20=40 \mathrm{e}^{-k 6}$ $\begin{aligned} & \mathrm{e}^{-6 k}=\frac{1}{2} \\ & \ln \left(\frac{1}{2}\right)=-6 k \\ & -6 \mathrm{k}=-0.693147 \\ & k=0.1155 \\ & =0.116 \end{aligned}$	M1 A1 A1	Or $\ln 2=6 \mathrm{k}$ (M1 A1 for $-k=-0.116$) Accept 0.115 SC1-0.116
(d)	$\begin{aligned} & \text { When } t=18, m=40 \mathrm{e}^{-18 k} \\ & =5.002 \ldots \\ & =5 \end{aligned}$	B1 B1 B1	Condone $4 . \dot{9}$ Accept 5.000 ... or 4.96 to 5 Exact answer (not rounded) NB Three 'half-lives' hence mass is 5 grams SC3
(e)	$\begin{aligned} & \text { When } \mathrm{m}=2, \quad 2=40 e^{-k t} \\ & \ln 0.05=-0.1155 \mathrm{t} \\ & t=25.9 \end{aligned}$	M1 A1 A1	or $6 \ln 20 / \ln 2$ Condone 25.8 or 26
	TOTAL	16	
	TOTAL MARK FOR PAPER	60	

[^0]: Further copies of this Mark Scheme are available from: aqa.org.uk

