Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Free-Standing Mathematics Qualification Advanced Level June 2011

Working with Algebraic and Graphical Techniques

6991/2

For Examiner's Use

Examiner's Initials

Mark

Question

1

2

3

4

5

6

TOTAL

Unit 11

Friday 20 May 2011 9.00 am to 10.30 am

For this paper you must have:

- a clean copy of the Data Sheet (enclosed)
- a calculator
- a ruler.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- You may not refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is enclosed for your use.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You may use either a scientific calculator or a graphics calculator.

Section A

Answer all questions in the spaces provided.

Use Wembley stadium on page 2 of the Data Sheet.

1 A mathematical model for the arch is produced. The equation is

$$y = \frac{133x}{24\,806}(315 - x)$$

where the x-coordinate of a point on the arch is the horizontal distance in metres from the left support and the y-coordinate is the vertical distance in metres above the ground at this point.

- (a) Using this model, complete the table of values opposite. (2 marks)
- (b) On the grid opposite, complete the graph of

$$y = \frac{133x}{24\,806}(315 - x) \qquad \text{for } 0 \le x \le 315$$
 (2 marks)

- (c) Use your graph to find:
 - (i) the values of x when y = 100; (2 marks)
 - (ii) the gradient of the graph when x = 60. (2 marks)
- (d) The centre of the arch is 140 metres above the football pitch.

How far below ground level is the football pitch? (1 mark)

(e) The equation $y = \frac{133x}{24\,806}(315 - x)$ can be rearranged into the form

$$y = A - 0.00536(B - x)^2$$

where A and B are constants.

Find the values of A and B. (3 marks)

(f) How are the values of A and B connected to the dimensions of the arch? (2 marks)

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

Section B

Answer all questions in the spaces provided.

Use Waste recycling on page 2 of the Data Sheet.								
2		The equation $y = ct^3 + d$, where c and d are constants, can be used to mo amount of recycled household waste, y tonnes, in terms of t , the number of since 1997.						
(a)	Complete the table of values opposite.	(2 marks)					
(b)	On the grid opposite, plot y against t^3 .						
		Draw a line of best fit on your graph.	(3 marks)					
(с)	Use your graph to find the values of c and d .	(3 marks)					
(d)	Use your values of c and d in the equation $y = ct^3 + d$ to find:						
	(i)	the amount of recycled waste in 2005;	(2 marks)					
	(ii)	the first year when the amount of recycled waste was expected to exceed 5000 tonnes.	(3 marks)					
PART								
••••••	•••••							
• • • • • • • • • • • • • • • • • • • •			••••••					

QUESTION PART REFERENCE	
••••••	
••••••	
••••••	
•••••	
•••••	

QUESTION PART REFERENCE	
••••••	
••••••	
••••••	
•••••	
•••••	
•••••	

Section C

Answer all questions in the spaces provided.

Use Computer speeds on page 2 of the Data Sheet.

	Ose Computer speeds on page 2 of the Data Sheet.								
3	The computing speed, S operations per second, can be modelled by the	he equation							
	$S = ka^t$								
	where t is the number of years since 1972 and a and k are constants.								
(a)	Complete the table of values opposite.	(2 marks)							
(b)	On the grid opposite, plot $\ln S$ against t .								
	Draw a line of best fit on your graph.	(3 marks)							
(c)	Find the equation for the line of best fit in terms of $\ln S$ and t .	(3 marks)							
(d)	Hence express S in terms of t .	(2 marks)							
QUESTION									
PART EFERENCE									
•••••		•••••							
		••••••••••							
•••••									
1									

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

4		Another model for S states that S doubles every two years.							
(a) (i)	Using 1972 as the starting year, calculate what this model predicts for computer speeds for the year 1982. (2 mar.	ks)						
	(ii)	Calculate the percentage error in using this model to predict the value of S in 1982 (2 mar.							
(b)	Use the axes opposite to sketch the graph of S against time, t , for this model. (2 mar.)	ks)						
QUESTION									
PART REFERENCE	•••••								
••••••	•••••		••••						
••••••	•••••		••••						
			••••						
	•••••		••••						
••••••	•••••		••••						
	•••••		••••						
	••••••		••••						
			••••						
	•••••								
	•••••		••••						
	•••••		••••						
	•••••		••••						
			••••						
	•••••								

QUESTION PART REFERENCE	
REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
	Slacklacklack
	├
	t

Section D

Answer all questions in the spaces provided.

Use Circadian rhythms on page 2 of the Data Sheet.

5	The temperature,	T°C,	of an	average	human	being can	be modelled	by	the	equation
---	------------------	------	-------	---------	-------	-----------	-------------	----	-----	----------

$$T = 36.8 - 0.65 \sin(15h + 30)^{\circ}$$

where h is the number of hours since midnight.

- (a) What is the minimum temperature predicted by this model? (1 mark)
- (b) At what time did this minimum temperature occur? (2 marks)
- (c) What is the maximum temperature predicted by this model? (1 mark)
- (d) At what time did this maximum temperature occur? (2 marks)
- (e) At what times does this model predict the temperature will be 36.8 °C? (3 marks)
- (f) For the function $36.8 0.65 \sin(15h + 30)^{\circ}$, state:
 - (i) the amplitude; (1 mark)
 - (ii) the period. (1 mark)
- (g) Describe fully the transformation that maps the graph of $T = \sin h^{\circ}$ onto the graph of $T = \sin(h + 30)^{\circ}$. (1 mark,
- (h) Describe fully the transformations that map the graph of $T = \sin h^{\circ}$ onto the graph of $T = 36.8 + 0.65 \sin h^{\circ}$. (2 marks)

PART REFERENCE	
	•••••

QUESTION PART REFERENCE	

