Version 1.0 0611

Free-Standing Mathematics Qualification June 2011

Mathematics Advanced Level 6990

(Specification 6990)

Using and Applying Statistics

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	OE	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Application of Mark Scheme

No method shown:

Correct answer without working Incorrect answer without working	mark as in scheme zero marks unless specified otherwise			
More than one method / choice of solution:				
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down			
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only			
Crossed out work	do not mark unless it has not been replaced			
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate			

Free-Standing Mathematics Qualification

Advanced Level: Using and Applying Statistics (6990/2)

Answers and Marking Scheme – June 2011

Question 1

(a)	18.3 – 14.3 (= 4)	B1	
	$\frac{\text{their 4}}{14.3} \times 100 \ (= 27.97\ \%)$	B1	OE
(b)	$\frac{18.3}{70} \times 100$	M1 M1	OE $\frac{18.3}{0.7}$ M2
	26.1 – 18.3 = 7.8(4) million	A1	7.8m or better, must have units
	TOTAL	5	

(a)(i)	2008 Q4 and 2009 Q1	B1	
(a)(ii)	1422 - 1059.9	M1ft	
	362.(1) thousand	A1	must have units
(b)(i)	positive gradient or increasing	B1	
(b)(ii)	recession or unemployment rising etc.	B1	
(c)	recognise compound reduction	M1	$\times 0.9 \dots \times 0.9$ etc
	arriving at Q4 2011 = 1275.75	A1	
	arriving at (Q3 2012) = 930.02	A1	
	stating Q3 2012	A1	Correct answer without working \Rightarrow SC2
	TOTAL	9	

(a)	Obtaining (9.6), 30.6, 51.7, 70.9, 86.9, 92.5, 95.0, 97.3, (100.1)	B 1	
	Rounding errors	B1	Or percentages are to 1 dp
(b)	plotting the percentage cumulative frequencies at upper cumulative boundaries	M1	on boundaries
	their heights (±1 sq)	A1	must be an increasing function or cumulative bar chart ⇒ M1 A1 A0
	joined by curve or straight lines	A1	fully correct
(c)(i)	median $\approx 4.9 \text{ km} (\leq 5)$ For a correct graph accept any value $4.5 - 5$	B1ft	part (c)(i) and (c)(ii) and (d)(i) must be from an increasing non-linear function
			allow tolerance $\pm \frac{1}{2}$ sq
(c)(ii)	their 12.5 (11 – 13) – their 1.75 (< 2) for correct graphs	M1	correctly locating and attempting to subtract their quartiles
	≈10.75 (9-12)	A1ft	
(d)(i)	Box and quartiles drawn ft correctly from their graph	B1ft	Can only ft drawn cumulative frequency curve
			or single points)
	whiskers to 0 km and 80 km	B 1	both whiskers correct $\pm \frac{1}{2}$ sq
(d)(ii)	Positive skew	B 1	Or a good description of positive skew
(d)(iii)	(Median of England is greater than the median of Newcastle-upon-Tyne suggesting) people in Newcastle-upon-Tyne do not travel as far to work.	B1	Not ft. Do not allow if (c)(i) and (c)(ii) are vastly incorrect eg 50 and 39 km.
	The interquartile range of England is much greater than that for Newcastle-upon-Tyne which suggests that people in Newcastle-upon- Tyne are more consistent in their distances travelled to work.	B2	B1 for just saying greater in England with nothing in context
	TOTAL	14	

Question	4
----------	---

(a)	The mean number of days is +9 meaning that the Oak first leafed on average around the 29 th April each year	B2	B1 for +9
(b)	$\overline{x} = -12.3$	B1	
	$\sum (x_i - \overline{x})^2 = 412.06$	M1 A1	
	$\sigma_n = 6.42$	A1	accept $\sigma_{n-1} = 6.77$
(c)	On average, the Oak is first leafing about April 8 th in the 90s which is 3 weeks before it was first leafing in the 50s	B1	Leaves appear much earlier in the 90s Or 21.(3) days difference
	The sd is less in the 90s compared to the 50s	B 1	
	The numbers are more consistent in the 90s than in the 50s	B 1	Can imply second B1
(d)	These data seem to support the idea of global warming in that the Oak first leaves are much earlier because of the warmer weather	B1	OR The claim appears to be correct but it may not be correct it could just be natural variation OR There is not enough evidence
	TOTAL	10	

(a)(i)	$\overline{x} = 11.8$	B 1	3sf or better
(a)(ii)	$\overline{y} = 75.5$	B1	
(b)(i)	<i>r</i> = 0.996	B1	3sf or better from 0.99557863
(b)(ii)	<i>r</i> is very high and positive suggesting that there is strong positive correlation between the foot length and height of these boys.	B1	Do not accept perfect positive correlation
(c)(i)	y = 5.77x + 7.41	B2	B1 if both correct but either not to 2dp a, b interchanged = SC1
(c)(ii)	a = 5.77 which is the regression coefficient it tells us the gradient of the regression line	B1	
	it means as foot length increases by 1 cm height increases by 5.77 cm	B1ft	ft their a
(c)(iii)	calculate and plot two points within the grid using their equation (<i>x</i> -intercept > 7.2, < 7.5) if no <i>x</i> -intercept check for (9, 59.3 – < 60) point	M1 M1	or use their $(\overline{x}, \overline{y})$ as one point correctly calculated points plotted incorrectly implies SC1
	draw line through their two points	A1ft	SC1 line drawn through $(\overline{x}, \overline{y})$ with positive gradient $\pm \frac{1}{2}$ sq
(d)	Use their equation with $x = 13.8$; " $y = 5.77 \times 13.8 + 7.41$ "	M1	
	87 cm	A1ft	can use the <u>correct</u> drawn line not an incorrectly drawn line NB 108.0 (<i>a</i> , <i>b</i> interchanged)
	TOTAL	13	

(a)	P(M>27 = $P\left(Z < \frac{27 - 24.9}{1.05}\right)$ or $P(Z>2)$	M1	penalise 1 mark for incorrect standardising
	$1 - \Phi(2)$	M1	
	1 – 0.9772	M1	
	0.0228	A1	
(b)	$P(22 < W < 25) = P\left(\frac{22 - 22.8}{0.89} < Z < \frac{25 - 22.8}{0.89}\right)$	M1	$\frac{22.8 - 22}{0.89} < Z < \frac{22.8 - 25}{0.89}$
	<i>P</i> (-0.899 < <i>Z</i> < 2.47)	A1,A1	0.899, – 2.47 penalise 1 mark for incorrect standardising
	$\Phi(2.47) - [1 - \Phi(.899)]$ (= 0.9932 - [1 - 0.8156])×100	M1	allow no interpolation $\Phi(2.47) - [1 - \Phi(0.90)]$ (= 0.9932 - [1 - 0.8159]) ×100
	82% or 81%	A1	from 81.88% or 80.91%
	TOTAL	9	
	TOTAL MARK FOR PAPER	60	