

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
A	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation					
√or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
−x EE	deduct x marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

Q	Solution	Marks	Total	Comments
1(a)	$y(2.1) = y(2) + 0.1[2^2 - 1^2]$	M1A1		
	$= 1+0.1 \times 3 = 1.3$	A1	3	
(b)	y(2.2) = y(2) + 2(0.1)[f(2.1, y(2.1))]	M1		
	$\dots = 1 + 2(0.1)[2.1^2 - 1.3^2]$	A1√		Ft on cand's answer to (a)
	$\dots = 1 + 0.2 \times 2.72 = 1.544$	A1	3	CAO
	Total		6	
2(a)	Area = $\frac{1}{2}\int (1 + \tan \theta)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	$\dots = \frac{1}{2} \int (1 + 2 \tan \theta + \tan^2 \theta) d\theta$	B1		Correct expansion of $(1+\tan\theta)^2$
	$= \frac{1}{2} \int (\sec^2 \theta + 2 \tan \theta) d\theta$	M1		$1 + \tan^2 \theta = \sec^2 \theta \text{ used}$
	$= \frac{1}{2} \left[\tan \theta + 2 \ln(\sec \theta) \right]^{\frac{\pi}{3}}$	A1√ B1√		Integrating $p \sec^2 \theta$ correctly Integrating $q \tan \theta$ correctly
	$= \frac{1}{2} [(\sqrt{3} + 2 \ln 2) - 0] = \frac{\sqrt{3}}{2} + \ln 2$	A1	6	Completion. AG CSO be convinced
(b)	$OP = 1$; $OQ = 1 + \tan \frac{\pi}{3}$ Shaded area =	B1		Both needed. Accept 2.73 for OQ
	'answer (a)' $-\frac{1}{2}OP \times OQ \times \sin\left(\frac{\pi}{3}\right)$	M1		
	$= \frac{\sqrt{3}}{2} + \ln 2 - \frac{\sqrt{3}}{4} (1 + \sqrt{3})$ $= \frac{\sqrt{3}}{4} + \ln 2 - \frac{3}{4}$	A1	3	ACF. Condone 0.376 if exact 'value' for area of triangle seen
	T			
	Total		9	

Q	Solution	Marks	Total	Comments
3(a)	$\left(m+2\right)^2=-1$	M1		Completing sq or formula
	$m = -2 \pm i$	A 1		
	CF is $e^{-2x}(A \cos x + B \sin x)$ {or $e^{-x}A \cos(x + B)$ but not $Ae^{(-1+i)x} + Be^{(-1-i)x}$ }	M1 A1√		If <i>m</i> is real give M0 Ft on wrong <i>a</i> 's and <i>b</i> 's but roots must be complex
	PI try $y = p \implies 5p = 5$ PI is $y = 1$	B1		
	GS $y = e^{-2x}(A\cos x + B\sin x) + 1$	B1√	6	Their CF + their PI with two arbitrary constants.
(b)	$x=0, y=2 \Rightarrow A=1$ $y'(x)=-2e^{-2x}(A\cos x+B\sin x) + e^{-2x}(-A\sin x+B\cos x)$	B1√ M1 A1√		Provided previous B1√ awarded Product rule used
	$y'(0) = 3 \Rightarrow 3 = -2A + B \Rightarrow B = 5$ $y = e^{-2x}(\cos x + 5\sin x) + 1$	A1√	4	Ft on one slip
	Total		10	
4 (a)	The interval of integration is infinite	E1	1	OE
(b)	$\int xe^{-3x} dx = -\frac{1}{3}xe^{-3x} - \int -\frac{1}{3}e^{-3x} dx$	M1 A1	2	Reasonable attempt at parts
	$= -\frac{1}{3}xe^{-3x} - \frac{1}{9}e^{-3x} \left\{ +c \right\}$	A1√	3	Condone absence of $+c$
(c)	$I = \int_{1}^{\infty} x e^{-3x} dx = \lim_{a \to \infty} \int_{1}^{a} x e^{-3x} dx$ $\lim_{a \to \infty} \left\{ -\frac{1}{3} a e^{-3a} - \frac{1}{9} e^{-3a} \right\} - \left[-\frac{4}{9} e^{-3} \right]$	M1		$F(a) - F(1)$ with an indication of limit $a \to \infty$
	$\lim_{a \to \infty} ae^{-3a} = 0$	M1		For statement with limit/limiting process shown
	$I = \frac{4}{9}e^{-3}$	A1	3	
	Total		7	

$y(0) = 1 \Rightarrow c = \frac{5}{6}$ $y = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac$	Q	Solution	Marks	Total	Comments
$= e^{\ln(x^2 + 1)} = e^{\ln(x^2 + 1)^2} = (x^2 + 1)^2$ $= e^{\ln(x^2 + 1)^2} = (x^2 + 1)^2$ $= \frac{d}{dx} (y(x^2 + 1)^2) = x(x^2 + 1)^2$ $= \frac{d}{dx} (y(x^2 + 1)^2) = x(x^2 + 1)^2$ $= \frac{d}{dx} (x^2 + 1)^2 = \int_0^1 x(x^2 + 1)^2 dx$ $= \frac{d}{dx} (x^2 + 1)^2 = \int_0^1 (x^2 + 1)^3 + c$ $= \frac{d}{dx} (x^2 + 1)^3 + c$ $= $	5	IF is $e^{\int \frac{4x}{x^2+1} dx}$	M1		
$\frac{d}{dx} \left(y(x^2 + 1)^2 \right) = x(x^2 + 1)^2$ $y(x^2 + 1)^2 = \int x(x^2 + 1)^2 dx$ $y(x^2 + 1)^2 = \frac{1}{6} \left(x^2 + 1 \right)^3 + c$ $y(0) = 1 \Rightarrow c = \frac{5}{6}$ $y = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6} \left(x^2 + 1 \right) + \frac{1}{6} \left(x^2 + $			A1√		Ft on $e^{p \ln(x^2+1)}$
$y(x^2+1)^2 = \int x(x^2+1)^2 dx$ $y(x^2+1)^2 = \frac{1}{6}(x^2+1)^3 + c$ $y(0) = 1 \Rightarrow c = \frac{5}{6}$ $y = \frac{1}{6}(x^2+1) + \frac{5}{6(x^2+1)^2}$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $x = r\cos\theta y = r\sin\theta$ $xy = 4, y = \frac{4}{x}$ $x = r\cos\theta y = r\sin\theta$ $x = r\cos\theta y = r\cos\theta$ $x = r\cos\theta r\cos\theta = r\cos\theta = r\cos\theta = r\cos\theta$ $x = r\cos\theta r\cos\theta = $		$\frac{d}{d}(y(r^2+1)^2) - r(r^2+1)^2$	M1		
$y(x^2+1)^2 = \frac{1}{6}(x^2+1)^3 + c$ $y(0) = 1 \Rightarrow c = \frac{5}{6}$ $y(0) = 1 \Rightarrow c = \frac{5}{6}$ $y = \frac{1}{6}(x^2+1) + \frac{5}{6(x^2+1)^2}$ $x = \frac{1}{6}(x^2+1) + 1$		$dx^{(3(x+1))}$	A1√		RHS of form $kx(x^2+1)^p$
$y(0) = 1 \Rightarrow c = \frac{5}{6}$ $y = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{1}{6}(x^2 + 1) + \frac{1}{6}(x^2 + 1)$ $x = \frac{1}{6}(x^2 + 1) + \frac$		$y(x^2+1)^2 = \int x(x^2+1)^2 dx$			
$y(0) = 1 \Rightarrow c = \frac{5}{6}$ $y = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $A1 \qquad 9 \qquad \text{Accept other forms of } f(x)$ $y = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $A1 \qquad 9 \qquad \text{Accept other forms of } f(x)$ $y = \frac{\left(\frac{x^6}{6} + \frac{2x^4}{4} + \frac{x^2}{2} + 1\right)}{\left(x^2 + 1\right)^2}$ $y = \frac{\left(\frac{x^6}{6} + \frac{2x^4}{4} + \frac{x^2}{2} + 1\right)}{\left(x^2 + 1\right)^2}$ $y = \frac{x^2}{4} + \frac{x^2}{2} + \frac{x^2}{2}$ $x = r \cos \theta y = r \sin \theta \text{M1}$ $xy = 4 y = \frac{4}{x}$ $x = r \cos \theta y = r \sin \theta \text{M1}$ $xy = 4 y = \frac{4}{x}$ $x = r \cos \theta y = r \sin \theta \text{M1}$ $xy = 4 y = \frac{8}{x}$ $x = r \cos \theta y = r \sin \theta \text{M1}$ $x = \frac{8}{x} = r \cos \theta \text{Subs} x = 2$ $x = \frac{8}{x} = 1$ $x = r \sin \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $x = r \cos \theta y = \frac{\pi}{4} \text{M1}$ $x = r \cos \theta y = \frac{\pi}{4} \text{M2}$ $x = r \cos \theta y = r \sin \theta \text{M3}$ $x = r \cos \theta y = r \sin \theta \text{M3}$ $x = r \cos \theta y = r \sin \theta \text{M4}$ $x = r \cos \theta y = \frac{8}{2x}$ $x = r \cos \theta y = r \sin \theta \text{M1}$ $x = r \cos \theta y = \frac{8}{2x}$ $x = r \cos \theta y = r \sin \theta \text{M1}$ $x = r \cos \theta y = \frac{8}{2x}$ $x = r \cos \theta y = \frac{8}{2x}$ $x = r \cos \theta y = \frac{8}{2x}$ $x = r \cos \theta y = r \sin \theta x = r \cos \theta x = r \cos$		$y(x^2+1)^2 = \frac{1}{6}(x^2+1)^3 + c$			Use of suitable substitution to find RHS
$y(0) = 1 \Rightarrow c = \frac{5}{6}$ $y = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6}(x^2 + 1)^2$ $x = \frac{1}{6}(x^2 + 1) + \frac{5}{6}(x^2 + 1)^2$ $x = \frac{1}{6}(x^2 + 1) + \frac{1}{6}(x^2 + 1)$ $x = 1$		O	A1		
Total Total g $y = \frac{\left(\frac{x^6}{6} + \frac{2x^4}{4} + \frac{x^2}{2} + 1\right)}{\left(x^2 + 1\right)^2}$ Total 9 Sin $2\theta = 2\sin\theta\cos\theta$ used Either one stated or used Either OE eg $y = \frac{8}{2x}$ (b) y y y y y y y y		$y(0) = 1 \Rightarrow c = \frac{5}{6}$	m1		
Total Total g $y = \frac{\left(\frac{x^6}{6} + \frac{2x^4}{4} + \frac{x^2}{2} + 1\right)}{\left(x^2 + 1\right)^2}$ Total 9 Sin $2\theta = 2\sin\theta\cos\theta$ used Either one stated or used Either OE eg $y = \frac{8}{2x}$ (b) y y y y y y y y		$y = \frac{1}{6}(x^2 + 1) + \frac{5}{6(x^2 + 1)^2}$	A1	9	Accept other forms of $f(x)$
G(a) $r^2 2 \sin \theta \cos \theta = 8$ $x = r \cos \theta$ $y = r \sin \theta$ $xy = 4$, $y = \frac{4}{x}$ M1 M1 A1 B1 $\sin 2\theta = 2 \sin \theta \cos \theta$ used Either OE eg $y = \frac{8}{2x}$ (b) y B1 $xy = 4$ $xy = 4$ In cartesian, $A(2, 2)$ $\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r = 2 \sec \left(\frac{\pi}{4}\right)$ (m1)M1 $xy = \frac{\pi}{4}$ (m1) y Used either $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$ x <th></th> <th>$6(x^{2}+1)^{2}$</th> <th>111</th> <th></th> <th>$\left(x^{6} + 2x^{4} + x^{2} + 1\right)$</th>		$6(x^{2}+1)^{2}$	111		$\left(x^{6} + 2x^{4} + x^{2} + 1\right)$
G(a) $r^2 2 \sin \theta \cos \theta = 8$ $x = r \cos \theta$ $y = r \sin \theta$ $xy = 4$, $y = \frac{4}{x}$ M1 M1 					
6(a) $r^2 2 \sin \theta \cos \theta = 8$ $x = r \cos \theta$ $y = r \sin \theta$ M1 M1 $xy = 4$, $y = \frac{4}{x}$ A1 $y = \frac{4}{x}$ B1 $y = x = 2$ Sub $x = 2 = 2 = 2 = 2$ Sub $x = 2 = 2 = 2 = 2 = 2 = 2$ M1 In cartesian, $A(2, 2)$ $\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ M1 $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ A1 $\Rightarrow r = \sqrt{x^2 + y^2} = $					$\left(x^2+1\right)^2$
$x = r \cos \theta y = r \sin \theta$ $xy = 4 , y = \frac{4}{x}$ (b) $xy = 4 , y = \frac{4}{x}$ $x = r \cos \theta y = r \sin \theta$ $xy = 4 , y = \frac{4}{x}$ B1 $x = r \cos \theta y = r \sin \theta$ Either OE eg $y = \frac{8}{2x}$ $x = r \cos \theta y = r \sin \theta$ Either OE eg $y = \frac{8}{2x}$ $x = r \cos \theta y = r \sin \theta$ Either OE eg $y = \frac{8}{2x}$ $x = r \cos \theta x = 2$ Sub $x = 2 \sin xy = 4 \Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $x = r \cos \theta x = 2$ $x = r \cos \theta x = 2$ Sub $x = 2 \sin xy = 4 \Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $x = r \cos \theta x = 2$ $x = r \cos \theta x = 2$ Sub $x = 2 \sin xy = 4 \Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $x = r \cos \theta x = 2$ $x = r \cos \theta x = 2$ Sub $x = 2 \sin xy = 4 \Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $x = r \cos \theta x = 2$ $x = r \cos \theta x = 2$ Sub $x = 2 \sin xy = 4 \Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $x = r \cos \theta x = 2$ $x = r \cos \theta x = 2$ Used either $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$ Alt $r = r \cos \theta = 2$ simultaneously (M1) $x = r \cos \theta x = 2$ Sub $x = 2 \sin xy = 4 \Rightarrow 2y = 4$ Alt $x = r \cos \theta = 2$ Solving $r \cos \theta = 2$ and $r \sin \theta = 2$ simultaneously (M1) $x = r \cos \theta x = 2$ Sub $x = 2 \sin xy = 4$ Alt $x = r \cos \theta = 2$ Solving $r \cos \theta = 2$ and $r \sin \theta = 2$ simultaneously (M1) $x = r \cos \theta x = 2$ Sub $x = 2 \sin x = 2$ Solving $r \cos \theta = 2$ and $r \sin \theta = 2$ simultaneously (M1) $x = r \cos \theta x = 2$ Sub $x = r \cos \theta x = 2$			2.51	9	
(c) $r = 2 \sec \theta$ is $x = 2$ Sub $x = 2$ in $xy = 4$ $\Rightarrow 2y = 4$ M1 In cartesian, $A(2, 2)$ $\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ Alt 2 Alt 2 Bight in the order of the ord	6(a)				
(b)		4	IVI I		
(c) $r = 2 \sec \theta$ is $x = 2$ Sub $x = 2$ in $xy = 4$ $\Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ $\theta = \frac{\pi}{4} ; r = \sqrt{8}$ Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r = 2\sec\left(\frac{\pi}{4}\right)$ (m1) B1 I Used either $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$ A1 4 r must be given in surd form Altn3: $r\sin \theta = 2$ (B1) Solving $r\cos \theta = 2$ and $r\sin \theta = 2$ simultaneously (M1) $\tan \theta = 1$ or $r^2 = 2^2 + 2^2$ (M1) $\theta = \frac{\pi}{4} ; r = \sqrt{8}$ (A1) need both		$xy = 4$, $y = \frac{\cdot}{x}$	A1	3	Either OE eg $y = \frac{3}{2x}$
(c) $r = 2 \sec \theta$ is $x = 2$ Sub $x = 2$ in $xy = 4$ $\Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ $\theta = \frac{\pi}{4} ; r = \sqrt{8}$ Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r = 2 \sec \left(\frac{\pi}{4}\right)$ (m1) We deither $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$ $A1 \qquad 4 \qquad r \text{ must be given in surd form}$ Altn3: $r \sin \theta = 2$ (B1) Solving $r \cos \theta = 2$ and $r \sin \theta = 2$ simultaneously (M1) $\tan \theta = 1 \text{ or } r^2 = 2^2 + 2^2 \text{ (M1)}$ $\theta = \frac{\pi}{4} ; r = \sqrt{8} \text{ (A1) need both}$	(b)	у 1 1			
(c) $r = 2 \sec \theta$ is $x = 2$ Sub $x = 2$ in $xy = 4$ $\Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ M1 Used either $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$ $\theta = \frac{\pi}{4}$; $r = \sqrt{8}$ Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r = 2\sec\left(\frac{\pi}{4}\right)$ (m1) Substitution $r = 2\sec\left(\frac{\pi}{4}\right)$ (m1) $\theta = \frac{\pi}{4}$; $r = \sqrt{8}$ (A1) need both			B1	1	
(c) $r = 2 \sec \theta$ is $x = 2$ Sub $x = 2 \text{ in } xy = 4 \Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ M1 Used either $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$ $\theta = \frac{\pi}{4}$; $r = \sqrt{8}$ Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r = 2\sec\left(\frac{\pi}{4}\right)$ (m1) Substitution $r = 2\sec\left(\frac{\pi}{4}\right)$ (m1) $\theta = \frac{\pi}{4}$; $r = \sqrt{8}$ (A1) need both		X			
Sub $x = 2$ in $xy = 4 \Rightarrow 2y = 4$ In cartesian, $A(2, 2)$ $\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ M1 Used either $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$ $\theta = \frac{\pi}{4} ; r = \sqrt{8}$ A1	(c)		R1		
$\Rightarrow \tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ $\theta = \frac{\pi}{4} ; r = \sqrt{8}$ Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r = 2\sec\left(\frac{\pi}{4}\right)$ (m1) $\Rightarrow \tan \theta = \frac{y}{x} \text{ or } r = \sqrt{x^2 + y^2}$ Used either $\tan \theta = \frac{y}{x} \text{ or } r = \sqrt{x^2 + y^2}$ $\Rightarrow r \text{ must be given in surd form}$ Altn3: $r\sin \theta = 2$ (B1) $\text{Solving } r\cos \theta = 2 \text{ and } r\sin \theta = 2 \text{ simultaneously (M1)}$ $\tan \theta = 1 \text{ or } r^2 = 2^2 + 2^2 \text{ (M1)}$ $\theta = \frac{\pi}{4} ; r = \sqrt{8} \text{ (A1) need both}$		Sub $x = 2$ in $xy = 4 \implies 2y = 4$			
$\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ $\theta = \frac{\pi}{4} \; ; r = \sqrt{8}$ Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r = 2\sec\left(\frac{\pi}{4}\right)$ (m1) $\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$ Altn3: $r\sin \theta = 2$ (B1) Solving $r\cos \theta = 2$ and $r\sin \theta = 2$ simultaneously (M1) $\tan \theta = 1$ or $r^2 = 2^2 + 2^2$ (M1) $\theta = \frac{\pi}{4} \; ; r = \sqrt{8} \; \text{(A1) need both}$					
$\theta = \frac{\pi}{4} \; ; r = \sqrt{8}$ Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r = 2\sec\left(\frac{\pi}{4}\right)$ (m1) $\theta = \frac{\pi}{4} \; ; r = \sqrt{8} \; (A1)$ $\theta = \frac{\pi}{4} \; ; r = \sqrt{8} \; (A1) \; need both$			M1		Used either $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$
Altn2: Eliminating r to reach eqn. in $\cos \theta$ and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1) Altn3: $r\sin \theta = 2$ (B1) Solving $r\cos \theta = 2$ and $r\sin \theta = 2$ simultaneously (M1) $\tan \theta = 1$ or $r^2=2^2+2^2$ (M1) $\theta = \frac{\pi}{4}$; $r = \sqrt{8}$ (A1) need both		•			
and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1) Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1) Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1) Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1) $\theta = \frac{\pi}{4}$; $r=\sqrt{8}$ (A1) need both		T	A1	4	_
Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1) $\theta = \frac{\pi}{4}$ (A1) $\tan \theta = 1 \text{ or } r^2=2^2+2^2 \text{ (M1)}$ $\theta = \frac{\pi}{4} \text{ ; } r = \sqrt{8} \text{ (A1) need both}$					t t
Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1) $\theta = \frac{\pi}{4}$; $r = \sqrt{8}$ (A1) need both		and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1)			simultaneously (M1)
$0 - \frac{1}{4}$, $t = \sqrt{6}$ (A1) freed both		Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1)			` '
$ r = \sqrt{8}$ (A1) OE surd		$r = \sqrt{8}$ (A1) OE surd			$\frac{\sqrt{-4}}{4}$, $\frac{\sqrt{6}}{4}$ (A1) freed both
Total 8				8	

Q	Solution	Marks	Total	Comments
7(a)(i)	$\ln(1+2x) = 2x-2x^2+\frac{8}{3}x^3$	M1		Use of expansion of $ln(1+x)$
	3	A1	2	Simplified 'numerators'.
	$-\frac{1}{2} < x \le \frac{1}{2}$	B1	1	
(b)(i)	$y=\ln \cos x \Rightarrow y'(x) = \frac{1}{\cos x}(-\sin x)$	M1		
	$y''(x) = -\sec^2 x$	A1		ACF
	$y'''(x) = -2\sec x (\sec x \tan x)$	M1		Chain rule OE
	$\{y'''(x) = -2\tan x(\sec^2 x)\}$	A1√	4	Ft a slipaccept unsimplified
(ii)	$y''''(x) = -2[\sec^2 x(\sec^2 x) + \tan x(2\sec x (\sec x \tan x))]$	M1 A1		Product rule OE ACF
	$y''''(0) = -2[(1)^2 + 0] = -2$	A1√	3	Ft a slip
(iii)	$1\cos x \approx 0 + 0 + \frac{x^2}{2}(-1) + 0 + \frac{x^4}{4!}(-2)$	M1		
	$\approx -\frac{x^2}{2} - \frac{x^4}{12}$	A1	2	CSO throughout part (b). AG
(c)				
	$Limit = \lim_{x \to 0} \left[\frac{x \ln(1+2x)}{x^2 - \ln\cos x} \right]$			
	$= \lim_{x \to 0} \left[\frac{x(2x - 2x^2 +)}{x^2 - \left(-\frac{x^2}{2} - \frac{x^4}{12}\right)} \right]$	M1		Using earlier expansions
	Limit = $\lim_{x \to 0} \frac{2x^2 - o(x^3)}{1.5x^2 + o(x^4)}$			The notation $o(x^n)$ can be replaced by a term of the form kx^n
	$= \lim_{x \to 0} \frac{2 - o(x)}{1.5 + o(x^2)} = \frac{4}{3}$	M1 A1	3	Need to see stage, division by x^2
	Total		15	

Q	Solution	Marks	Total	Comments
8(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^{t} \ \{=x\}$			
		B1		
	$x\frac{\mathrm{d}y}{\mathrm{d}x} = x\frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x}$	M1		Chain rule
		1,11		Chain ruic
	$=x\frac{dy}{dt}\frac{1}{x}=\frac{dy}{dt}$	A1	3	Completion. AG
	dt x dt	111	2	
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(x \frac{\mathrm{d}y}{\mathrm{d}x} \right) =$			
	$\frac{dt^2}{dt^2} - \frac{dt}{dt} \left(\frac{dt}{dx} \right) - \frac{dt}{dx} \left($			
	dx dy $d(dy)$			
	$= \frac{\mathrm{d}x}{\mathrm{d}t} \frac{\mathrm{d}y}{\mathrm{d}x} + x \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)$	M1		Product rule
	dy dx d(dy)			
	$\dots = \frac{\mathrm{d}y}{\mathrm{d}t} + x \frac{\mathrm{d}x}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)$	M1		
	$\dots = \frac{\mathrm{d}y}{\mathrm{d}t} + x^2 \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)$		2	
	$\cdots = \frac{1}{dt} + x \left(\frac{1}{dx^2} \right)$	A1	3	Condone leaving in this form
	$_{2} d^{2}y d^{2}y dy$			4.0
	$\Rightarrow x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} - \frac{dy}{dt}$			AG
(b)	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6x \frac{\mathrm{d}y}{\mathrm{d}x} + 6y = 0$			
	$\frac{dx^2}{dx^2} = \frac{dx}{dx} + \frac{dy}{dx} = 0$			
	$\Rightarrow \frac{d^2y}{dt^2} - 7\frac{dy}{dt} + 6y = 0$	3.54		
	$\Rightarrow \frac{d}{dt^2} - 7 \frac{d}{dt} + 6y - 0$	M1		Using results in (a) to reach DE of this form
	$Auxl eqn m^2 - 7m + 6 = 0$			TOTHI
	(m-6)(m-1)=0	m1		PI
	m=1 and 6	A1		PI
	$y = Ae^{6t} + Be^t$	M1		Must be solving the 'correct' DE.
				(Give M1A0 for $y = Ae^{6x} + Be^{x}$)
	$y = Ax^6 + Bx$	A1√	5	Ft a minor slip only if previous A0
	70 4 1		11	and all three method marks gained
	Total		11	
	TOTAL		75	