General Certificate of Education January 2008 Advanced Level Examination

MATHEMATICS Unit Pure Core 3

ACCAL ASSESSMENT AND QUALIFICATIONS ALLIANCE

MPC3

Thursday 17 January 2008 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1	(a)	Find $\frac{dy}{dx}$ when:	
		(i) $y = (2x^2 - 5x + 1)^{20};$	(2 marks)
		(ii) $y = x \cos x$.	(2 marks)
	(b)	Given that	

$$y = \frac{x^3}{x - 2}$$

show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{kx^2(x-3)}{(x-2)^2}$$

where k is a positive integer.

2 (a) Solve the equation $\cot x = 2$, giving all values of x in the interval $0 \le x \le 2\pi$ in radians to two decimal places. (2 marks)

(b) Show that the equation $\csc^2 x = \frac{3\cot x + 4}{2}$ can be written as

$$2\cot^2 x - 3\cot x - 2 = 0 \qquad (2 marks)$$

(c) Solve the equation
$$\csc^2 x = \frac{3 \cot x + 4}{2}$$
, giving all values of x in the interval $0 \le x \le 2\pi$ in radians to two decimal places. (4 marks)

(3 marks)

3 The equation

$$x + (1 + 3x)^{\frac{1}{4}} = 0$$

has a single root, α .

- (a) Show that α lies between -0.33 and -0.32. (2 marks)
- (b) Show that the equation $x + (1 + 3x)^{\frac{1}{4}} = 0$ can be rearranged into the form

$$x = \frac{1}{3}(x^4 - 1)$$
 (2 marks)

(c) Use the iteration $x_{n+1} = \frac{(x_n^4 - 1)}{3}$ with $x_1 = -0.3$ to find x_4 , giving your answer to three significant figures. (3 marks)

4 The functions f and g are defined with their respective domains by

$$f(x) = x^3$$
, for all real values of x
 $g(x) = \frac{1}{x-3}$, for real values of x, $x \neq 3$

(a) State the range of f. (1 mark)

(b) (i) Find
$$fg(x)$$
. (1 mark)

- (ii) Solve the equation fg(x) = 64. (3 marks)
- (c) (i) The inverse of g is g^{-1} . Find $g^{-1}(x)$. (3 marks)
 - (ii) State the range of g^{-1} . (1 mark)

5 (a) (i) Given that
$$y = 2x^2 - 8x + 3$$
, find $\frac{dy}{dx}$. (1 mark)

(ii) Hence, or otherwise, find

$$\int_{4}^{6} \frac{x-2}{2x^2-8x+3} \, \mathrm{d}x$$

giving your answer in the form $k \ln 3$, where k is a rational number. (4 marks)

(b) Use the substitution u = 3x - 1 to find $\int x\sqrt{3x - 1} \, dx$, giving your answer in terms of x. (4 marks)

Turn over for the next question www.theallpapers.com

- (a) Sketch the curve with equation y = cosec x for 0 < x < π. (2 marks)
 (b) Use the mid-ordinate rule with four strips to find an estimate for ∫_{0.1}^{0.5} cosec x dx, giving your answer to three significant figures. (4 marks)
- 7 (a) Describe a sequence of **two** geometrical transformations that maps the graph of $y = x^2$ onto the graph of $y = 4x^2 5$. (4 marks)
 - (b) Sketch the graph of $y = |4x^2 5|$, indicating the coordinates of the point where the curve crosses the *y*-axis. (3 marks)
 - (c) (i) Solve the equation $|4x^2 5| = 4$. (3 marks)
 - (ii) Hence, or otherwise, solve the inequality $|4x^2 5| \ge 4$. (2 marks)

8 (a) Given that
$$e^{-2x} = 3$$
, find the exact value of x. (2 marks)

(b) Use integration by parts to find $\int xe^{-2x} dx$. (4 marks)

(c) A curve has equation
$$y = e^{-2x} + 6x$$
.

6

(i) Find the exact values of the coordinates of the stationary point of the curve.

(4 marks)

- (ii) Determine the nature of the stationary point. (2 marks)
- (iii) The region R is bounded by the curve $y = e^{-2x} + 6x$, the x-axis and the lines x = 0 and x = 1.

Find the volume of the solid formed when *R* is rotated through 2π radians about the *x*-axis, giving your answer to three significant figures. (5 marks)

END OF QUESTIONS