Version

General Certificate of Education (A-level) January 2013

Mathematics

MS/SS1A

(Specification 6360)

Statistics 1A

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

1 (a) $a = \underline{30}$ B1CAO(b)(i) b (gradient) = $-\underline{0.64}$ b (gradient) = $-\underline{0.6 \text{ to } -0.7}$ b (gradient) = $-\underline{0.6 \text{ to } -0.7}$ a (intercept) = $\underline{31}$ a (intercept) = $\underline{31}$ a (intercept) = $\underline{30 \text{ to } 32}$ a (intercept) = $\underline{30 \text{ to } 32}$ (B1)B2 B2 (B1)CAO (-0.6- AWFW Treat rounding of correct answers as ISW Written form of equation is not required CAO (3 AWFWAttempt at $\sum x \sum x^2 \sum y \ \& \sum xy \ (\sum y^2)$ or Attempt at $S_{xx} \ \& S_{xy} \ (S_{yy})$ (M1) (M1)225 7125 135 \ \& 2415 \ (2643) (all 4 attempted)Attempt at correct formula for b (gradient) b (gradient) = $-\underline{0.64}$ a (intercept) = $\underline{31}$ (M1) (M1)1500 \ \& -960 \ (618) (both attempted)(ii)Candle length reduces by 0.64 (cm) per hour Candle burns 0.64 (cm) each/per hour Candle burns 0.64 (cm) each/per hour Candle compensation (intercept) = 0.64B1 BF1 (BF2) (BF1)OE; must be in context OE; must be in context OE; must be in context OE; must be in context (double -ve) F on $-0.6 \le b \le -0.7$ from (i)(ii)Cangle reduces by -0.64 (cm) each/per hour Candle burns 0.64 (cm) each/per hour Candle reduces by -0.64 (cm) each/per hour Cangle reduces by -0.64 (cm) each/	Q	Solution	Marks	Total	Comments
	1				
Attempt at $2x - 2y - 2y - 2y - (2y)$ (All a fully at tempt at $2x - 2x - 2y - (2y)$ (all 4 attempted)orAttempt at $S_x & \delta_{Sy} (S_y)$ (MI)(MI)(all 4 attempted)Attempt at correct formula for b (gradient) b (gradient) = -0.64 (mi)(All Al)(All Al)(ii)Candle length reduces by 0.64 (cm) per hour Candle burns 0.64 (cm) each/per hour Candle reduces by -0.64 (cm) each/per hour Candle reduces -0.7 from (i)OE; must be in context OE; must be in context OE; context not required B0 for reference only to correlation 2(iii)When $x = 50$, $y = (31 \text{ or } 30) - 0.64 \times 50$ $= -1 \text{ or } -2$ or $30 \div 0.64 = 46.8 to 47B1Claim not justifiedor-1 is impossible or value < 50$	(b)(i)	b (gradient) = -0.6 to -0.7 a (intercept) = 31	(B1) B2		AWFW Treat rounding of correct answers as ISW Written form of equation is not required CAO (31
by 0.64 (cm) per hour Candle burns 0.64 (cm) each/per hour Candle reduces by -0.64 (cm) each/per hour (Length, y, cm) decreases with (time, x, hours) or As (time, x, hours) increases then (length, y, cm) decreases (B1) When $x = 50$, $y = (31 \text{ or } 30) - 0.64 \times 50$ = -1 or -2 or When $y = 0$, $x = 31 \div 0.64 = 48 \text{ to } 48.5$ or $30 \div 0.64 = 46.8 \text{ to } 47$ Claim not justified or -1 is impossible or value < 50 Claim cannot be answered due to uneven burning or unlikely to burn completely Hard B1 B1 B1 B1 CAO; accept correct comparison of 32 with either 30 or 31 AWFW OE; dependent on previous B1 Extrapolation required Extrapolation required		or Attempt at S_{xx} & S_{xy} (S_{yy}) Attempt at correct formula for <i>b</i> (gradient)	(m1)	4	(all 4 attempted) 1500 & -960 (618) (both attempted)
or As (time, x, hours) increases then (length, y, cm) decreases(B1)(B1)OE; context not required B0 for reference only to correlation(iii)When $x = 50, y = (31 \text{ or } 30) - 0.64 \times 50$ $= -1 \text{ or } -2$ or $30 \div 0.64 = 46.8 \text{ to } 47$ B1CAO; accept correct comparison of 32 with either 30 or 31(iii)When $y = 0, x = 31 \div 0.64 = 48 \text{ to } 48.5$ or $30 \div 0.64 = 46.8 \text{ to } 47$ B1AWFWClaim not justified or -1 is impossible or value < 50	(ii)	by 0.64 (cm) per hour Candle burns 0.64 (cm) each/per hour	BF1 (BF2)		OE; must be in context OE; must be in context OE; must be in context (double -ve)
$= -1 \text{ or } -2$ or $When y = 0, x = 31 \div 0.64 = 48 \text{ to } 48.5$ or $30 \div 0.64 = 46.8 \text{ to } 47$ Claim not justified or $-1 \text{ is impossible or value < 50}$ Claim cannot be answered due to uneven burning or unlikely to burn completely (B1) $32 \text{ with either } 30 \text{ or } 31$ $AWFW$ $AWFW$ $OE; dependent on previous B1$ $Extrapolation required$		or As (time, <i>x</i> , hours) increases then	(B1)	2	
or -1 is impossible or value < 50 Bdep1 OE; dependent on previous B1 Claim cannot be answered due to uneven burning or unlikely to burn completely (B1) Extrapolation required 2 2	(iii)	$= -1 \text{ or } -2$ or When $y = 0$, $x = 31 \div 0.64 = 48 \text{ to } 48.5$ or	B1		AWFW
burning or unlikely to burn completely 2		or	Bdep1		OE; dependent on previous B1
			(B1)	2	Extrapolation required

MS/SS1A	/IS/SS1A/W (cont)					
Q	Solution	Marks	Total	Comments		
Q 2	Volume, $V \sim N(5.028, 0.015^2)$			In (a)(i), ignore the inclusion of a lower limit of 0; it has no effect on the answer		
(a)(i)	$P(V < 5.04) = P\left(Z < \frac{5.04 - 5.028}{0.015}\right)$	M1		Standardising 5.04 with 5.028 and 0.015; allow (5.028 – 5.04)		
	$= P(Z < \underline{0.8})$	A1		CAO; ignore inequality and sign May be implied by a correct answer		
	= <u>0.788</u>	A1	(3)	AWRT (0.78814)		
(ii)	P(V > 5) = P(Z > -1.87) = P(Z < +1.87)	M1		Correct area change May be implied by a correct answer or by an answer > 0.5		
	= <u>0.968 to 0.97</u>	A1	(2)	AWFW (0.96903)		
			5			
(b)	95% (0.95) $\Rightarrow z = 1.96$ or 1.64 to 1.65	B1		AWRT/AWFW; ignore sign		
	$z = \frac{\left(5.028 + v\right) - 5.028}{0.015}$	M1		Standardising $(5.028 \pm v)$ or v with 5.028 and 0.015		
	$\frac{\pm v}{0.015} = \pm (1.96 \text{ or } 1.64 \text{ to } 1.65)$	m1		Allow inconsistent signs Allow $\pm(v - 5.028)$		
	v = 0.029 to 0.03	A1	4	AWFW Must use consistent signs and 1.96 1.64 to 1.65 \Rightarrow 0.024 to 0.025		
		Total	9			

MS/SS1A	/W (cont)			
Q	Solution	Marks	Total	Comments
3 (a)	$\frac{E \sim B(40, 0.30)}{P(E \le 10)} = 0.308 \text{ to } 0.309$	M1 A1	(2)	Used anywhere in question even by implication from a correct value AWFW (0.3087)
(b)	$P(E \ge 15) = 1 - (0.8074 \text{ or } 0.8849)$ = 0.192 to 0.193	M1 A1	(2)	Requires '1 –' Accept 3 dp rounding or truncation Can be implied by 0.192 to 0.193 but not by 0.115 to 0.116 AWFW (0.1926)
(c)	$P(6 \le E \le 18) = (0.9852 \text{ or } 0.9680)$ MINUS (0.0086 or 0.0238) = 0.976 to 0.977	M1 M1 A1	(3)	Accept 3 dp rounding or truncation Accept 3 dp rounding or truncation AWFW (0.9766)
		Total	7	

Q	Solution	Marks	Total	Comments
4 (a)	Identifying linear patterns/non linear patterns/ multiple patterns/no pattern (<i>allow 'trend'</i>) Identifying outliers/anomalies Estimating/gives idea of value of <i>r</i> /sign of <i>r</i>	B1	1	OE B0 for reference to checking calculated value
(b)(i)	$r = \frac{S_{xy}}{\sqrt{S_{xx} \times S_{yy}}} = \frac{2715.36}{\sqrt{5336.96 \times 4169.76}}$ $= 0.575 \text{ to } 0.576$	M1 A1	2	Correct substitution into correct formula May be implied by a correct answer AWFW (0.57561)
(b)(ii)	(Quite or fairly) weak/some/moderate positive (linear) correlation/relationship/association/link (<i>but not 'trend'</i>) between	Adep1		Dependent on 0.57 ≤ r ≤ 0.58 OE; must qualify strength and state positive Ignore extra words unless contradict Adep0 for 'strong', 'high', 'average', 'good', 'medium', 'reasonable', 'poor', 'low', 'small', 'unlikely', or adjective 'very'
	marks or scores or papers	B1	2	Context; providing $-1 < r < 1$
(iii)	Equal (to) or Same (as) or $r_{uv} = r_{xy}$	B1	1	OE
		Total	6	

Q	VW (cont) Solution	Marks	Total	Comments
5	Soution	101ul Kb	Total	Ratios (eg 3:10) are only penalised by
(a)(i)	P(F & C) = 0.3 or 3/10 or 30%	B1		1 accuracy mark at first correct answer CAO (0.3)
(a)(i)	$1(1 \times 0) = 0.5 \text{ or } 5/10 \text{ or } 50/0$	DI	(1)	(0.5
(ii)	P(G or S) = 0.45 or 45/100 or 45%	B1	(1)	CAO (0.45
(iii)	$P(C F) = \frac{0.3 \text{ or } (i)}{0.55} =$	M1		
	<u>30/55 or 6/11</u> or	A1		CAO (6/11
	<u>(0.545 to 0.55) or (54.5% to 55%)</u>		(2)	AWFW (0.54545)
(iv)	$P(F C') = \frac{0.25 \text{ or } (0.60 - 0.35)}{0.60}$	M1 M1		Correct numerator Correct denominator
	<u>25/60 or 5/12</u>	A1		CAO (5/12
	(0.416 to 0.42) or (41.6% to 42%)		(3)	AWRT (0.41667
			7	
(b)				Attempt at sum of at least 2 squared
	$P = [P(F \& C)]^2$ or $[P(F \& G)]^2$	M1		terms; $0 < \text{term} < 1$; not $(a+b)^2$ May be implied by a correct expression or a correct answer
	$0.30^2 + 0.25^2$ or $0.09 + 0.0625 =$	A1		OE Ignore additional terms or integer multipliers May be implied by a correct answer
	or <u>(0.152 to 0.153) or (15.2% to 15.3%)</u>	A1	3	CAO (0.1525 AWFW
		Total	10	

	/W (cont)	M	T 4 1	
Q 6	Solution	Marks	Total	Comments
0 (a)	$L \sim N(1005, 15^2)$			
	$V(pack) = \frac{15^2}{12} \text{ or } \frac{225}{12} \text{ or } \frac{75}{4}$			CAO
	OR <u>18.7 to 18.8</u>	B1		AWFW (18.75)
	SD (pack) = $\frac{15}{\sqrt{12} \text{ or } 15/2\sqrt{3} \text{ or } 5\sqrt{3}/2}$ or	51		CAO; OE
	<u>4.3 to 4.4</u>			AWFW (4.33013)
	$P(L < 1000) = P\left(\frac{1000 - 1005}{15/\sqrt{12}}\right) =$	M1		Standardising 1000 using 1005 and $15/\sqrt{3}$ OE; allow (1005 – 1000)
	P(Z < -1.1547) = 1 - P(Z < 1.1547) =	m1		Correct area change May be implied by a correct answer or an answer < 0.5
	1 - (0.87698 to 0.87493) = 0.123 to 0.126	A1	4	AWFW (0.12411) (1 - answer) \Rightarrow B1 M1 max
(b)(i)	99% (0.99) $\Rightarrow z = 2.57$ to 2.58	B1		AWFW (2.5758)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used with z (2.05 to 2.58), \bar{x} (4.65) & σ (0.15) and $\div \sqrt{n}$ with $n > 1$
	Thus $4.65 \pm 2.5758 \times \frac{0.15}{\sqrt{24}}$	A1		$z (2.05 \text{ to } 2.06 \text{ or } 2.32 \text{ to } 2.33 \\ \text{or } 2.57 \text{ to } 2.58), \\ \overline{x} (4.65) \& \sigma(0.15) \\ \text{and } \div \sqrt{24 \text{ or } 23 \text{ or } 12 \text{ or } 11}$
	Hence 4.65 ± 0.08			CAO/AWRT
	OR	A1		
	<u>(4.57, 4.73)</u>		4	AWRT
(b)(ii)	Clear correct comparison of 4.5 with LCL or CI (eg 4.5 < LCL or its value or 4.5 < CI or its limits	BF1		F on CI only providing $LCL > 4.5$ (ie whole of CI > 4.5) Quoting values for LCL or for CI is not required BF0 for '4.5 is outside CI'; OE
	so Agree with manufacturer's specification	Bdep1	2	OE; dependent on previous BF1
		Total	10	

MS/SS1A	/W (cont)			
Q	Solution	Marks	Total	Comments
7 (a)	$\sigma \approx \frac{10}{a}$ or $\frac{20}{b}$ or $\frac{\text{range}}{b}$ or $10c$ or $20d$	M1		OE; with $2 \le a \le 4$ $4 \le b \le 8$ or with <i>c</i> or <i>d</i> in equiv percentages Cannot be implied from a correct answer (justification required)
	<u>2.5 or 3.3(OE) or 5</u>	A1	2	
SC	Award B1 for only 2.5 or 3.3(OE) or 5 with no justifica Award B0 for any other answer with no justification or wi	tion th incorrect		$h (eg \sqrt{10} = 3.16)$
(b)	Valid statement involving: 391 and 405 OR 401 and 415 OR 24 and 10 OR 391 and 415 and 10/24 with linking statement	B1		Allow 'set weight' to imply 415 and/or 'mean' to imply 391 B0 for 10 linked to σ
	95.5 > (value of σ of 2.5 or 3.3(OE) or 5)	B1		Accept ≠ rather than > Clear correct numerical comparison
	Neither (likely to be) correct	Bdep1	3	Dependent on B1 B1
(c)	Mean or $\overline{y} = \frac{8210.0}{10} = \underline{821}$ OR $\sum y = \underline{8200}$	B1		CAO;
	Variance $\frac{110.00}{9} = \underline{12.2}$ or $\frac{110.00}{10} = \underline{11}$ OR $\underline{3.5 \text{ or } 3.3}$	B1		AWRT CAO Award on value ; ignore notation AWRT
	821 is similar to/within 10 of 820 OR 8210 is within 100 of 8200	B1		OE; clear correct numerical comparison of 821 with 820 Allow 'set weight' to imply 820 Or OE; clear correct numerical comparison of 8210 with 8200 but do not accept 'within 10' here
	3.5 or 3.3 is similar to a value of σ of 3.3(OE) or 2.5	B1	4	Clear correct numerical comparison
		Total	9	