General Certificate of Education January 2008 Advanced Level Examination

MATHEMATICS Unit Statistics 2A

MS2A/W

Friday 11 January 2008 9.00 am to 10.15 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MS2A/W.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- Unit Statistics 2A has a written paper and coursework.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

MS2A/W

Answer all questions.

1 David claims that customers have to queue at a supermarket checkout for more than 5 minutes, on average.

The queuing times, x minutes, of 40 randomly selected customers result in $\overline{x} = 5.5$ and $s^2 = 1.31$.

Investigate, at the 1% level of significance, David's claim. (6 marks)

2 A 24-hour helpline is staffed each day in sessions of 3 hours.

The number of calls, X, to the helpline each session may be assumed to be modelled by a Poisson distribution with a mean of 12.0.

- (a) (i) Calculate the probability that during any session at least 13 calls to the helpline are received. (2 marks)
 - (ii) Hence calculate the probability that at least 13 calls to the helpline are received during exactly 5 out of 8 consecutive sessions. (3 marks)
- (b) Give a reason why a Poisson distribution may not be a suitable model for X. (1 mark)
- 3 A speed camera was used to measure the speed, V mph, of John's serves during a tennis singles championship.

For 10 randomly selected serves,

$$\sum v = 1179$$
 and $\sum (v - \overline{v})^2 = 1014.9$

where \overline{v} is the sample mean.

- (a) Construct a 99% confidence interval for the mean speed of John's serves at this tennis championship, stating any assumption that you make. (7 marks)
- (b) Hence comment on John's claim that, at this championship, he consistently served at speeds in excess of 130 mph. (1 mark)

- 3
- **4** A discrete random variable *X* has the probability distribution

$$P(X = x) = \begin{cases} \frac{x}{20} & x = 1, 2, 3, 4, \\ \frac{x}{24} & x = 6 \\ 0 & \text{otherwise} \end{cases}$$

(a) Calculate $P(X \ge 5)$. (2 marks)

5

(b) (i) Show that
$$E\left(\frac{1}{X}\right) = \frac{7}{24}$$
. (2 marks)

(ii) Hence, or otherwise, show that $Var\left(\frac{1}{X}\right) = 0.036$, correct to three decimal places. (3 marks)

(c) Calculate the mean and the variance of A, the area of rectangles having sides of length X + 3 and $\frac{1}{X}$. (5 marks)

(d) The mean of *C*, the circumference of circles having radii of length $1 + \frac{3}{X}$, is $k\pi$. Find the numerical value of *k*. (3 marks)

Turn over for the next question

5 A survey is carried out in an attempt to determine whether the salary achieved by the age of 30 is associated with having had a university education.

	Salary < £30 000	Salary \geq £30000	Total
University education	52	78	130
No university education	63	57	120
Total	115	135	250

The results of this survey are given in the table.

(a) Use a χ^2 test, at the 10% level of significance, to determine whether the salary achieved by the age of 30 is associated with having had a university education.

(9 marks)

- (b) What do you understand by a Type I error in this context? (2 marks)
- 6 The continuous random variable X has probability density function defined by

$$f(x) = \begin{cases} k(x^2 + 1) & 0 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

(a)	(i)	Show that the value of k is $\frac{1}{12}$. (3)	marks)
-----	-----	--	--------	--------

- (ii) Find the distribution function, F(x), for all x. (3 marks)
- (iii) Sketch the graph of F. (3 marks)
- (iv) Find $P(X \ge 2)$. (2 marks)
- (b) Calculate the **exact** value of E(X). (3 marks)

END OF QUESTIONS