General Certificate of Education
January 2008
Advanced Level Examination

MATHEMATICS

Unit Statistics 2A
Friday 11 January 20089.00 am to 10.15 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MS2A/W.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60 .
- The marks for questions are shown in brackets.
- Unit Statistics 2A has a written paper and coursework.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 David claims that customers have to queue at a supermarket checkout for more than 5 minutes, on average.

The queuing times, x minutes, of 40 randomly selected customers result in $\bar{x}=5.5$ and $s^{2}=1.31$.

Investigate, at the 1% level of significance, David's claim.
(6 marks)

2 A 24-hour helpline is staffed each day in sessions of 3 hours.
The number of calls, X, to the helpline each session may be assumed to be modelled by a Poisson distribution with a mean of 12.0 .
(a) (i) Calculate the probability that during any session at least 13 calls to the helpline are received.
(2 marks)
(ii) Hence calculate the probability that at least 13 calls to the helpline are received during exactly 5 out of 8 consecutive sessions.
(b) Give a reason why a Poisson distribution may not be a suitable model for X. (1 mark)

3 A speed camera was used to measure the speed, V mph, of John's serves during a tennis singles championship.

For 10 randomly selected serves,

$$
\sum v=1179 \quad \text { and } \quad \sum(v-\bar{v})^{2}=1014.9
$$

where \bar{v} is the sample mean.
(a) Construct a 99% confidence interval for the mean speed of John's serves at this tennis championship, stating any assumption that you make.
(7 marks)
(b) Hence comment on John's claim that, at this championship, he consistently served at speeds in excess of 130 mph .

4 A discrete random variable X has the probability distribution

$$
\mathrm{P}(X=x)= \begin{cases}\frac{x}{20} & x=1,2,3,4,5 \\ \frac{x}{24} & x=6 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Calculate $\mathrm{P}(X \geqslant 5)$.
(b) (i) Show that $\mathrm{E}\left(\frac{1}{X}\right)=\frac{7}{24}$.
(ii) Hence, or otherwise, show that $\operatorname{Var}\left(\frac{1}{X}\right)=0.036$, correct to three decimal places.
(c) Calculate the mean and the variance of A, the area of rectangles having sides of length $X+3$ and $\frac{1}{X}$.
(d) The mean of C, the circumference of circles having radii of length $1+\frac{3}{X}$, is $k \pi$.

Find the numerical value of k.

5 A survey is carried out in an attempt to determine whether the salary achieved by the age of 30 is associated with having had a university education.

The results of this survey are given in the table.

	Salary $<\mathbf{£ 3 0} \mathbf{0 0 0}$	Salary $\geqslant \mathbf{£ 3 0} \mathbf{0 0 0}$	Total
University education	52	78	130
No university education	63	57	120
Total	115	135	250

(a) Use a χ^{2} test, at the 10% level of significance, to determine whether the salary achieved by the age of 30 is associated with having had a university education.
(b) What do you understand by a Type I error in this context?

6 The continuous random variable X has probability density function defined by

$$
\mathrm{f}(x)=\left\{\begin{array}{cl}
k\left(x^{2}+1\right) & 0 \leqslant x \leqslant 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) (i) Show that the value of k is $\frac{1}{12}$.
(ii) Find the distribution function, $\mathrm{F}(x)$, for all x.
(iii) Sketch the graph of F.
(iv) Find $\mathrm{P}(X \geqslant 2)$.
(b) Calculate the exact value of $\mathrm{E}(X)$.

END OF QUESTIONS

