

# **General Certificate of Education**

# Mathematics 6360

MS03 Statistics 3

# Mark Scheme

## 2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

## Key To Mark Scheme And Abbreviations Used In Marking

| М          | mark is for method                                                 |     |                            |  |  |  |
|------------|--------------------------------------------------------------------|-----|----------------------------|--|--|--|
| m or dM    | mark is dependent on one or more M marks and is for method         |     |                            |  |  |  |
| А          | mark is dependent on M or m marks and is for accuracy              |     |                            |  |  |  |
| В          | mark is independent of M or m marks and is for method and accuracy |     |                            |  |  |  |
| E          | mark is for explanation                                            |     |                            |  |  |  |
|            |                                                                    |     |                            |  |  |  |
| or ft or F | follow through from previous                                       |     |                            |  |  |  |
|            | incorrect result                                                   | MC  | mis-copy                   |  |  |  |
| CAO        | correct answer only                                                | MR  | mis-read                   |  |  |  |
| CSO        | correct solution only                                              | RA  | required accuracy          |  |  |  |
| AWFW       | anything which falls within                                        | FW  | further work               |  |  |  |
| AWRT       | anything which rounds to                                           | ISW | ignore subsequent work     |  |  |  |
| ACF        | any correct form                                                   | FIW | from incorrect work        |  |  |  |
| AG         | answer given                                                       | BOD | given benefit of doubt     |  |  |  |
| SC         | special case                                                       | WR  | work replaced by candidate |  |  |  |
| OE         | or equivalent                                                      | FB  | formulae book              |  |  |  |
| A2,1       | 2 or 1 (or 0) accuracy marks                                       | NOS | not on scheme              |  |  |  |
| -x EE      | deduct x marks for each error                                      | G   | graph                      |  |  |  |
| NMS        | no method shown                                                    | c   | candidate                  |  |  |  |
| PI         | possibly implied                                                   | sf  | significant figure(s)      |  |  |  |
| SCA        | substantially correct approach                                     | dp  | decimal place(s)           |  |  |  |

#### No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Q    | Solution                                                                 | Marks         | Total | Comments                                                            |
|------|--------------------------------------------------------------------------|---------------|-------|---------------------------------------------------------------------|
| 1(a) | $\hat{p} = \frac{209}{250} = 0.836$                                      | B1            |       | CAO                                                                 |
|      | 95% CI $\Rightarrow$ $z = 1.96$                                          | B1            |       | САО                                                                 |
|      | CI for <i>p</i> :<br>$\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ | M1            |       | Variance term                                                       |
|      | $p \pm 2\sqrt{\frac{n}{n}}$                                              | M1            |       | Use of: $\hat{p} \pm z \times \sqrt{(\operatorname{Var}(\hat{p}))}$ |
|      | ie $0.836 \pm 1.96 \times \sqrt{\frac{0.836 \times 0.164}{250}}$         | A1√           |       | $$ on $\hat{p}$ and $z$ ; not on $n$                                |
|      | ie $0.836 \pm 0.046$                                                     |               |       |                                                                     |
|      | or (0.790, 0.882)                                                        | A1            | 6     | AWRT; accept 0.79                                                   |
| (b)  | Value of 0.8 (80%) is within CI                                          | B1√^<br>↑ dep |       | $\checkmark$ on CI                                                  |
|      | Council's clam <b>is supported</b> (at 5% level)                         | B1√           | 2     | √ on CI                                                             |
|      | Total                                                                    |               | 8     |                                                                     |

#### **MS03**

| Q    | Solution                                                   | Marks | Total | Comments                        |
|------|------------------------------------------------------------|-------|-------|---------------------------------|
| 2(a) | r = 0.819 to 0.82                                          | B3    |       | AWFW                            |
|      | or $r = 0.81$ to 0.83                                      | (B2)  |       | AWFW                            |
|      | or                                                         |       |       |                                 |
|      | r = 0.8 to 0.85                                            | (B1)  |       | AWFW                            |
|      | Attempt at $\Sigma x \ \Sigma x^2$                         |       |       | 989, 99321                      |
|      | $\Sigma y \Sigma y^2$                                      |       |       | 1717, 296101                    |
|      | Σχγ                                                        |       |       | 170956                          |
|      | or                                                         |       |       |                                 |
|      | attempt at $S_{xx}  S_{yy}  S_{xy}$                        | (M1)  |       | 1508.9, 1292.1, 1144.7          |
|      | Attempt at a correct formula for $r$                       | (m1)  |       |                                 |
|      | r = 0.819 to 0.82                                          | (A1)  | 3     | AWFW                            |
| (b)  | $H_0: \rho = 0$                                            | B1    |       | Both                            |
|      | $\mathrm{H}_{1}: \rho > 0$                                 |       |       |                                 |
|      | SL $\alpha = 0.01 (1\%)$                                   |       |       |                                 |
|      | SS $n = 10$                                                |       |       |                                 |
|      | CV $r = 0.7155$                                            | B1    |       | AWFW 0.715 to 0.716             |
|      | Calculated $r >$ Tabulated $r$                             | M1    |       | Comparison                      |
|      | Evidence (at 1% level) of a positive                       |       |       |                                 |
|      | correlation between heart rate and systolic blood pressure | A1√   | 4     | $\checkmark$ on <i>r</i> and CV |
|      | Total                                                      |       | 7     |                                 |

| Q      | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks | Total | Comments                              |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------------------------------------|
| 3      | $\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.15 \\ LD \\ 0.15 \\ LD \\ 0.03 \\ 0.5 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.10 \\ LD \\ 0.0045 \\ 0.10 \\ LD \\ 0.000 \\ 0.10 \\ LD \\ 0.000 \\ 0.10 \\ LD \\ 0.000 \\ 0.10 \\ LD \\ 0.05 \\ 0.10 \\ 0.000 \\ 0.10 \\ LD \\ 0.05 \\ 0.10 \\ 0.000 \\ 0.10 \\ LD \\ 0.05 \\ 0.000 \\ 0.10 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.10 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0$ |       |       |                                       |
| (a)(i) | $P(G \cap I) = 0.5 \times 0.9 = 0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1    | 1     | CAO; or equivalent                    |
| (ii)   | $P(I) = (i) + P(E \cap I) + P(F \cap I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1    |       | 3 possibilities                       |
|        | $= 0.45 + (0.2 \times 0.6) + (0.3 \times 0.75)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1    |       | $\geq 1$ correct <b>new</b> term      |
|        | = 0.45 + 0.12 + 0.225 = 0.795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1    | 3     | CAO; or equivalent                    |
| (iii)  | $P(G \mid I) = \frac{P(G \cap I)}{P(I)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1    |       | Attempted use of Bayes' Theorem       |
|        | $=\frac{(i)}{(ii)}=\frac{0.45}{0.795}=0.566$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m1    |       |                                       |
|        | (ii) 0.795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1    | 3     | AWRT; or equivalent                   |
| (b)    | $P(E \mid SD) = \frac{P(E \cap SD)}{P(SD)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1    |       | Correct use of Bayes' Theorem         |
|        | $=\frac{0.2\times0.25}{(0.2\times0.25)+(0.3\times0.15)}=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1    |       | Numerator (B1 if no Bayes' Theorem)   |
|        | $\frac{0.05}{0.05 + 0.045}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1    |       | Denominator (B1 if no Bayes' Theorem) |
|        | $=\frac{0.05}{0.095}=0.526$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1    | 4     | AWRT; or equivalent                   |
|        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 11    |                                       |

### MS03 (cont)

| <b>MS03</b> ( | (cont) |
|---------------|--------|
|---------------|--------|

| MS03 (cont)<br>Q | Solution                                                                                                | Marks | Total | Comments                                       |
|------------------|---------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------------------|
| 4(a)             | $E(R) = (6 \times 0.1) + (7 \times 0.6) + (8 \times 0.3)$                                               |       |       |                                                |
|                  | = 0.6 + 4.2 + 2.4 = 7.2                                                                                 | B1    |       | CAO                                            |
|                  | $E(R^2) = (3.6 + 29.4 + 19.2) = 52.2$                                                                   | B1    |       | CAO                                            |
|                  | $Var(R) = E(R^2) - (E(R))^2$                                                                            | M1    |       | Use of                                         |
|                  | = 52.2 - 51.84 = 0.36                                                                                   | A1    | 4     | CAO                                            |
| (b)(i)           | E(T) = 7.2 + 10.9 = 18.1                                                                                | B1√   |       | $\checkmark$ on E( <i>R</i> )                  |
|                  | $\operatorname{Cov}(R, S) = \rho_{RS} \times \sqrt{\operatorname{Var}(R) \times \operatorname{Var}(S)}$ | M1    |       | Use of; or equivalent<br>May be scored in (ii) |
|                  | Var(T) = Var(R) + Var(S) + 2Cov(R, S)                                                                   | M1    |       | Use of; or equivalent<br>May be scored in (ii) |
|                  | $= 0.36 + 1.69 + 2 \times \frac{2}{3} \sqrt{0.36 \times 1.69}$                                          |       |       |                                                |
|                  | = 0.36 + 1.69 + 1.04 = 3.09                                                                             | Al    | 4     | CAO                                            |
| (ii)             | E(D) = 10.9 - 7.2 = 3.7                                                                                 | B1√   |       | on E( <i>R</i> )                               |
|                  | Var(D) = Var(S) + Var(R) - 2Cov(S, R)                                                                   |       |       |                                                |
|                  | $= 1.69 + 0.36 - 2 \times \frac{2}{3} \sqrt{1.69 \times 0.36}$                                          |       |       |                                                |
|                  | = 1.69 + 0.36 - 1.04 = 1.01                                                                             | B1    | 2     | CAO                                            |
|                  | Total                                                                                                   |       | 10    |                                                |

| MS03 (cont) | Solution                                                                | Marks        | Total | Comments                                                                               |
|-------------|-------------------------------------------------------------------------|--------------|-------|----------------------------------------------------------------------------------------|
| 5           | Letters/week ~ Po(12.25)                                                |              |       |                                                                                        |
| (a)         | Letters/4-week $\sim N(49, 49)$                                         | B1           |       | CAO; mean = variance = $49$                                                            |
|             | $P(42 \le X_P \le 54) = P(41.5 < X_N < 54.5)$                           | M1           |       | Use of ±0.5                                                                            |
|             | $= P\left(\frac{41.5 - 49}{7} < Z < \frac{54.5 - 49}{7}\right)$         | M1           |       | Standardising (41.5, 42 or 42.5) or (53.5, 54 or 54.5) with C's $\mu$ and $\sqrt{\mu}$ |
|             | = P(-1.07 < Z < 0.79)                                                   |              |       |                                                                                        |
|             | $= \Phi(0.79) - (1 - \Phi(1.07))$                                       | m1           |       | Area change                                                                            |
|             | = 0.78524 - 1 + 0.85769                                                 |              |       |                                                                                        |
|             | = 0.641 to $0.644$                                                      | A1           | 5     | AWFW                                                                                   |
| (b)(i)      | 98% CI $\Rightarrow$ z = 2.3263                                         | B1           |       | AWFW 2.32 to 2.33                                                                      |
|             | CI for $\lambda/16$ -week:<br>$\hat{\lambda} \pm z\sqrt{\hat{\lambda}}$ | M1           |       | Use of expression                                                                      |
|             | ie 248 $\pm$ 2.3263× $\sqrt{248}$                                       |              |       |                                                                                        |
|             | or $15.5 \pm 2.3263 \times \sqrt{\frac{15.5}{16}}$                      | A1√          |       | $\checkmark$ on z                                                                      |
|             | ie $248 \pm 36.6$ or $15.5 \pm 2.3$                                     | M1           |       | Division by 16 somewhere                                                               |
|             | or (13.2, 17.8)                                                         | A1           | 5     | AWRT                                                                                   |
| (ii)        | Value of 12.25 (196) <b>is below</b> CI                                 | B1√<br>↑ dep |       | on CI; must use 12.25 (196)                                                            |
|             | Rosa's belief is supported                                              |              |       | √ on CI                                                                                |
|             | Total                                                                   |              | 12    |                                                                                        |

### MS03 (cont)

| Q    | Solution                                                                                                                                                                      | Marks | Total | Comments                                                                     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------|
| 6(a) | $\mathbf{E}(X) = \sum x \times \mathbf{P}(X = x)$                                                                                                                             | M1    |       | Use of                                                                       |
|      | $= \sum_{x=0}^{\infty} x \times \frac{e^{-\lambda} \lambda^x}{x!} = \lambda \times \sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!}$                             | M1    |       | Factor of $\lambda$<br>Cancelling of x<br>(Ignore change in limits)          |
|      | $= \lambda \times \sum P(X = x) = \lambda \times 1 = \lambda$                                                                                                                 | M1    |       | AG; must be clear                                                            |
|      | $G(t) = e^{\lambda t - \lambda}$ or $M(t) = e^{\lambda e^t - \lambda}$                                                                                                        | (B1)  |       | Either CAO                                                                   |
|      | Alternative                                                                                                                                                                   |       |       |                                                                              |
|      | $E(X) = \frac{dG(t)}{dt} \bigg _{t}  \text{or}  \frac{dM(t)}{dt} \bigg _{0}$                                                                                                  | (M1)  |       | Use of either                                                                |
|      | $\left[\lambda e^{\lambda t-\lambda}\right]_{1}$ or $\left[\lambda e^{t}e^{\lambda e^{t}-\lambda}\right]_{0} = \lambda$                                                       | (A1)  | 3     | AG; correct derivation                                                       |
| (b)  | $\mathrm{E}(X(X-1)) = \sum_{x=0}^{\infty} x(x-1) \times \frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}$                                                                         | M1    |       | Use of                                                                       |
|      | $= \lambda^2 \times \sum_{x=2}^{\infty} \frac{e^{-\lambda} \lambda^{x-2}}{(x-2)!}$                                                                                            | M1    |       | Factor of $\lambda^2$<br>Cancelling of $x(x-1)$<br>(Ignore change in limits) |
|      | $= \lambda^{2} \times \sum P(X = x) = \lambda^{2} \times 1 = \lambda^{2}$                                                                                                     | M1    |       | AG; must justify                                                             |
|      | $Var(X) = E(X^{2}) - (E(X))^{2}$<br>= E(X(X - 1)) + E(X) - (E(X))^{2}                                                                                                         | M1    |       |                                                                              |
|      | $=\lambda^2+\lambda-\lambda^2=\lambda$                                                                                                                                        | A1    |       | AG; must be clear                                                            |
|      | Alternative<br>Var(X) =                                                                                                                                                       |       |       |                                                                              |
|      | $\frac{\mathrm{d}^2 \mathrm{G}(t)}{\mathrm{d}^2 t}\bigg _{1} + \lambda - \lambda^2 \mathrm{or} \left.\frac{\mathrm{d}^2 \mathrm{M}(t)}{\mathrm{d}^2 t}\bigg _{0} - \lambda^2$ | (M2)  |       | use of either                                                                |
|      | $= \left[\lambda^2 e^{\lambda t - \lambda}\right]_1 + \lambda - \lambda^2 = \lambda$                                                                                          | (A2)  |       | AG; correct derivation                                                       |
|      | or<br>= $\left[\lambda e^{t}e^{\lambda e^{t}-\lambda} + \lambda^{2}e^{2t}e^{\lambda e^{t}-\lambda}\right]_{0} - \lambda^{2} = \lambda$                                        | (A1)  | 5     | AG; correct derivation                                                       |
|      | Total                                                                                                                                                                         |       | 8     |                                                                              |

MS03 (cont)

| MS03 (cont) | Solution                                                                                                                                                                       | Marks           | Total | Comments                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-----------------------------------------------------------|
| 7(a)        | $\overline{y} = 1193$                                                                                                                                                          | B1              | 1     | САО                                                       |
| (b)         | H <sub>0</sub> : $\mu_Y - \mu_X = 200$<br>H <sub>1</sub> : $\mu_Y - \mu_X > 200$                                                                                               | B1<br>B1        |       | 200 is not necessary<br>200 is necessary                  |
|             | SL $\alpha = 0.01 (1\%)$<br>CV $z = 2.3263$                                                                                                                                    | B1              |       | AWFW 2.32 to 2.33                                         |
|             | $z = \frac{(\overline{y} - \overline{x}) - 200}{\sqrt{\frac{\sigma_Y^2}{n_y} + \frac{\sigma_X^2}{n_x}}} = \frac{(1193 - 936) - 200}{\sqrt{\frac{65^2}{10} + \frac{45^2}{20}}}$ | M1<br>M1<br>A1√ |       | Numerator; 200 is not necessary Denominator $$ on (a)     |
|             | = 2.48 to 2.5                                                                                                                                                                  | A1              |       | AWFW                                                      |
|             | Evidence (at 1% level) to support the claim                                                                                                                                    | A1√             | 8     | on z and CV                                               |
| (c)(i)      | $CV(\overline{y} - \overline{x})$ :<br>200 + $z$ (denominator in (b))                                                                                                          | M1              |       | May be scored in (b)                                      |
|             | ie $200 + 2.3263 \times \sqrt{523.75}$                                                                                                                                         |                 |       |                                                           |
|             | (= 253.24)                                                                                                                                                                     | A1              | 2     | AG; must justify                                          |
| (ii)        | Power = $1 - P(Type II error)$                                                                                                                                                 | M1              |       | Use of                                                    |
|             | = $1 - P(accept H_0   H_0 false)$                                                                                                                                              | M1              |       | Use of; or equivalent                                     |
|             | $= 1 - P\left(Z < \frac{253.24 - 275}{\sqrt{523.75}}\right)$                                                                                                                   | M1              |       | Standardising 253.24 using 275 and C's denominator in (b) |
|             | $= 1 - \Phi(-0.95) = \Phi(0.95)$                                                                                                                                               | m1              |       | Area change                                               |
|             | = 0.83                                                                                                                                                                         | A1              | 5     | AWRT                                                      |
| (iii)       | Probability of <b>accepting</b> that difference in mean weights <b>is more than 200</b> grams                                                                                  | B1              |       | Not in context $\Rightarrow$ max of 2                     |
|             | when, in fact, it is 275 grams                                                                                                                                                 | B1              |       |                                                           |
|             | <b>is 0.83</b> (or 83%)                                                                                                                                                        | B1√`            | 3     | on (ii)                                                   |
|             | Total                                                                                                                                                                          |                 | 19    |                                                           |
|             | TOTAL                                                                                                                                                                          |                 | 75    |                                                           |