General Certificate of Education January 2007 Advanced Subsidiary Examination

MATHEMATICS Unit Pure Core 2

MPC2

Wednesday 10 January 2007 1.30 pm to 3.00 pm

For this paper you must have:

• an 8-page answer book

• the **blue** AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

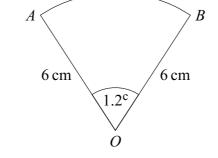
- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The diagram shows a sector *OAB* of a circle with centre *O*.



The radius of the circle is 6 cm and the angle AOB is 1.2 radians.

- (a) Find the area of the sector *OAB*. (2 marks)
- (b) Find the perimeter of the sector *OAB*. (3 marks)
- 2 Use the trapezium rule with four ordinates (three strips) to find an approximate value for

$$\int_0^3 \sqrt{2^x} \, \mathrm{d}x$$

giving your answer to three decimal places.

(4 marks)

3 (a) Write down the values of p, q and r given that:

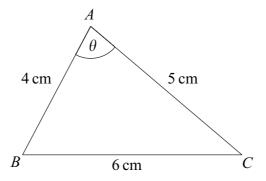
(i)
$$64 = 8^{p}$$
;
(ii) $\frac{1}{64} = 8^{q}$;
(iii) $\sqrt{8} = 8^{r}$. (3 marks)

(b) Find the value of x for which

$$\frac{8^x}{\sqrt{8}} = \frac{1}{64}$$
 (2 marks)

www.theallpapers.com

4 The triangle ABC, shown in the diagram, is such that BC = 6 cm, AC = 5 cm and AB = 4 cm. The angle BAC is θ .

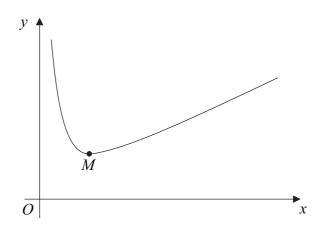


(a) Use the cosine rule to show that $\cos \theta = \frac{1}{8}$. (3 marks)

(b) Hence use a trigonometrical identity to show that $\sin \theta = \frac{3\sqrt{7}}{8}$. (3 marks)

- (c) Hence find the area of the triangle *ABC*. (2 marks)
- 5 The second term of a geometric series is 48 and the fourth term is 3.
 - (a) Show that one possible value for the common ratio, r, of the series is $-\frac{1}{4}$ and state the other value. (4 marks)
 - (b) In the case when $r = -\frac{1}{4}$, find:
 - (i) the first term; (1 mark)
 - (ii) the sum to infinity of the series. (2 marks)

6 A curve C is defined for x > 0 by the equation $y = x + 1 + \frac{4}{x^2}$ and is sketched below.



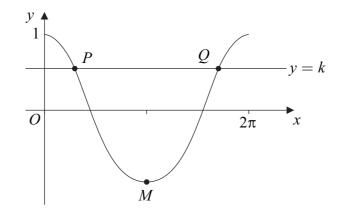
(a) (i) Given that
$$y = x + 1 + \frac{4}{x^2}$$
, find $\frac{dy}{dx}$. (3 marks)

- (ii) The curve C has a minimum point M. Find the coordinates of M. (4 marks)
- (iii) Find an equation of the normal to C at the point (1, 6). (4 marks)

(b) (i) Find
$$\int \left(x+1+\frac{4}{x^2}\right) dx$$
. (3 marks)

- (ii) Hence find the area of the region bounded by the curve C, the lines x = 1 and x = 4 and the x-axis. (2 marks)
- 7 (a) The first four terms of the binomial expansion of $(1 + 2x)^8$ in ascending powers of x are $1 + ax + bx^2 + cx^3$. Find the values of the integers a, b and c. (4 marks)
 - (b) Hence find the coefficient of x^3 in the expansion of $\left(1 + \frac{1}{2}x\right)(1 + 2x)^8$. (3 marks)

- 8 (a) Solve the equation $\cos x = 0.3$ in the interval $0 \le x \le 2\pi$, giving your answers in radians to three significant figures. (3 marks)
 - (b) The diagram shows the graph of $y = \cos x$ for $0 \le x \le 2\pi$ and the line y = k.



The line y = k intersects the curve $y = \cos x$, $0 \le x \le 2\pi$, at the points *P* and *Q*. The point *M* is the minimum point of the curve.

- (i) Write down the coordinates of the point M. (2 marks)
- (ii) The x-coordinate of P is α .

Write down the x-coordinate of Q in terms of π and α . (1 mark)

- (c) Describe the geometrical transformation that maps the graph of $y = \cos x$ onto the graph of $y = \cos 2x$. (2 marks)
- (d) Solve the equation $\cos 2x = \cos \frac{4\pi}{5}$ in the interval $0 \le x \le 2\pi$, giving the values of x in terms of π . (4 marks)

Turn over for the next question

- 9 (a) Solve the equation $3 \log_a x = \log_a 8$.
 - (b) Show that

$$3\log_a 6 - \log_a 8 = \log_a 27 \qquad (3 \text{ marks})$$

(2 marks)

(c) (i) The point P(3, p) lies on the curve $y = 3 \log_{10} x - \log_{10} 8$.

Show that
$$p = \log_{10}\left(\frac{27}{8}\right)$$
. (2 marks)

(ii) The point Q(6, q) also lies on the curve $y = 3 \log_{10} x - \log_{10} 8$. Show that the gradient of the line PQ is $\log_{10} 2$. (4 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page